本文实例讲述了python3非对称加密算法rsa。分享给大家供大家参考,具体如下:
python3 可以使用 crypto.publickey.rsa
和 rsa 生成公钥、私钥。
其中 python3.6 crypto 库的安装方式请参考前面一篇《python3对称加密算法aes、des3》
rsa 加解密的库使用 pip3 install rsa
就行了
c:\windows\system32>pip3 install rsa
collecting rsa
downloading https://files.pythonhosted.org/packages/e1/ae/baedc9cb175552e95f3395c43055a6a5e125ae4d48a1d7a924baca83e92e/rsa-3.4.2-py2.py3-none-any.whl (46kb)
100% |████████████████████████████████| 51kb 99kb/s
collecting pyasn1>=0.1.3 (from rsa)
downloading https://files.pythonhosted.org/packages/a0/70/2c27740f08e477499ce19eefe05dbcae6f19fdc49e9e82ce4768be0643b9/pyasn1-0.4.3-py2.py3-none-any.whl (72kb)
100% |████████████████████████████████| 81kb 289kb/s
installing collected packages: pyasn1, rsa
successfully installed pyasn1-0.4.3 rsa-3.4.2
使用 crypto.publickey.rsa 生成公钥、私钥:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
import crypto.publickey.rsa
import crypto.random
x = crypto.publickey.rsa.generate( 2048 )
a = x.exportkey( "pem" ) # 生成私钥
b = x.publickey().exportkey() # 生成公钥
with open ( "a.pem" , "wb" ) as x:
x.write(a)
with open ( "b.pem" , "wb" ) as x:
x.write(b)
y = crypto.publickey.rsa.generate( 2048 , crypto.random.new().read) # 使用 crypto.random.new().read 伪随机数生成器
c = y.exportkey() # 生成私钥
d = y.publickey().exportkey() #生成公钥
with open ( "c.pem" , "wb" ) as x:
x.write(c)
with open ( "d.pem" , "wb" ) as x:
x.write(d)
|
使用 crypto.publickey.rsa.importkey(private_key)
生成公钥和证书:
1
2
3
4
5
6
7
8
9
|
import crypto.publickey.rsa
with open ( "a.pem" , "rb" ) as x:
xx = crypto.publickey.rsa.importkey(x.read())
b = xx.publickey().exportkey() # 生成公钥
with open ( "b.pem" , "wb" ) as x:
x.write(b)
a = xx.exportkey( "der" ) # 生成 der 格式的证书
with open ( "a.der" , "wb" ) as x:
x.write(a)
|
使用 rsa 生成公钥、私钥:
1
2
3
4
5
6
7
8
|
import rsa
f, e = rsa.newkeys( 2048 ) # 生成公钥、私钥
e = e.save_pkcs1() # 保存为 .pem 格式
with open ( "e.pem" , "wb" ) as x: # 保存私钥
x.write(e)
f = f.save_pkcs1() # 保存为 .pem 格式
with open ( "f.pem" , "wb" ) as x: # 保存公钥
x.write(f)
|
rsa非对称加密算法实现:
使用crypto模块:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
import crypto.publickey.rsa
import crypto.cipher.pkcs1_v1_5
import crypto.random
import crypto.signature.pkcs1_v1_5
import crypto. hash
y = b "abcdefg1234567"
with open ( "b.pem" , "rb" ) as x:
b = x.read()
cipher_public = crypto.cipher.pkcs1_v1_5.new(crypto.publickey.rsa.importkey(b))
cipher_text = cipher_public.encrypt(y) # 使用公钥进行加密
with open ( "a.pem" , "rb" ) as x:
a = x.read()
cipher_private = crypto.cipher.pkcs1_v1_5.new(crypto.publickey.rsa.importkey(a))
text = cipher_private.decrypt(cipher_text, crypto.random.new().read) # 使用私钥进行解密
assert text = = y # 断言验证
with open ( "c.pem" , "rb" ) as x:
c = x.read()
c_rsa = crypto.publickey.rsa.importkey(c)
signer = crypto.signature.pkcs1_v1_5.new(c_rsa)
msg_hash = crypto. hash .sha256.new()
msg_hash.update(y)
sign = signer.sign(msg_hash) # 使用私钥进行'sha256'签名
with open ( "d.pem" , "rb" ) as x:
d = x.read()
d_rsa = crypto.publickey.rsa.importkey(d)
verifer = crypto.signature.pkcs1_v1_5.new(d_rsa)
msg_hash = crypto. hash .sha256.new()
msg_hash.update(y)
verify = verifer.verify(msg_hash, sign) # 使用公钥验证签名
print (verify)
|
运行结果:
true
使用 rsa 模块:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
import rsa
y = b "abcdefg1234567"
with open ( "e.pem" , "rb" ) as x:
e = x.read()
e = rsa.privatekey.load_pkcs1(e) # load 私钥
with open ( "f.pem" , "rb" ) as x:
f = x.read()
f = rsa.publickey.load_pkcs1(f) # load 公钥,由于之前生成的私钥缺少'rsa'字段,故无法 load
cipher_text = rsa.encrypt(y, f) # 使用公钥加密
text = rsa.decrypt(cipher_text, e) # 使用私钥解密
assert text = = y # 断言验证
sign = rsa.sign(y, e, "sha-256" ) # 使用私钥进行'sha256'签名
verify = rsa.verify(y, sign, f) # 使用公钥验证签名
print (verify)
|
运行结果:
true
希望本文所述对大家python程序设计有所帮助。
原文链接:https://blog.csdn.net/qq_42486920/article/details/80863322