gcc 优化选项 -O1 -O2 -O3 -Os 优先级,-fomit-frame-pointer

时间:2021-10-04 12:54:44

少优化->多优化:

O0 -->> O1 -->> O2 -->> O3

-O0表示没有优化,-O1为缺省值,-O3优化级别最高


英文解析:

`-O '
`-O1 '
                Optimize.      Optimizing   compilation   takes   somewhat   more   time,   and   a
                lot   more   memory   for   a   large   function.
 
                With   `-O ',   the   compiler   tries   to   reduce   code   size   and   execution
                time,   without   performing   any   optimizations   that   take   a   great   deal
                of   compilation   time.
 
                `-O '   turns   on   the   following   optimization   flags:
                               -fdefer-pop   
                               -fdelayed-branch   
                               -fguess-branch-probability   
                               -fcprop-registers   
                               -floop-optimize   
                               -fif-conversion   
                               -fif-conversion2   
                               -ftree-ccp   
                               -ftree-dce   
                               -ftree-dominator-opts   
                               -ftree-dse   
                               -ftree-ter   
                               -ftree-lrs   
                               -ftree-sra   
                               -ftree-copyrename   
                               -ftree-fre   
                               -ftree-ch   
                               -funit-at-a-time   
                               -fmerge-constants
 
                `-O '   also   turns   on   `-fomit-frame-pointer '   on   machines   where   doing
                so   does   not   interfere   with   debugging.
 
                `-O '   doesn 't   turn   on   `-ftree-sra '   for   the   Ada   compiler.      This
                option   must   be   explicitly   specified   on   the   command   line   to   be
                enabled   for   the   Ada   compiler.
 
`-O2 '
                Optimize   even   more.      GCC   performs   nearly   all   supported
                optimizations   that   do   not   involve   a   space-speed   tradeoff.      The
                compiler   does   not   perform   loop   unrolling   or   function   inlining   when
                you   specify   `-O2 '.      As   compared   to   `-O ',   this   option   increases
                both   compilation   time   and   the   performance   of   the   generated   code.
 
                `-O2 '   turns   on   all   optimization   flags   specified   by   `-O '.      It   also
                turns   on   the   following   optimization   flags:
                               -fthread-jumps   
                               -fcrossjumping   
                               -foptimize-sibling-calls   
                               -fcse-follow-jumps      -fcse-skip-blocks   
                               -fgcse      -fgcse-lm      
                               -fexpensive-optimizations   
                               -fstrength-reduce   
                               -frerun-cse-after-loop      -frerun-loop-opt   
                               -fcaller-saves   
                               -fpeephole2   
                               -fschedule-insns      -fschedule-insns2   
                               -fsched-interblock      -fsched-spec   
                               -fregmove   
                               -fstrict-aliasing   
                               -fdelete-null-pointer-checks   
                               -freorder-blocks      -freorder-functions   
                               -falign-functions      -falign-jumps   
                               -falign-loops      -falign-labels   
                               -ftree-vrp   
                               -ftree-pre
 
                Please   note   the   warning   under   `-fgcse '   about   invoking   `-O2 '   on
                programs   that   use   computed   gotos.
 
`-O3 '
                Optimize   yet   more.      `-O3 '   turns   on   all   optimizations   specified   by
                `-O2 '   and   also   turns   on   the   `-finline-functions ',
                `-funswitch-loops '   and   `-fgcse-after-reload '   options.
 
`-O0 '
                Do   not   optimize.      This   is   the   default. 


///==================另外还有个Os选项==========================

http://hi.baidu.com/ah__fu/blog/item/cc9fd19b801948bdc9eaf4b3.html

在研究编译驱动的makefile的时候,发现GCC的命令行里面有一个-Os的优化选项。
    遍查GCC文档,发现了-O0, -O1, -O2, -O3,就是没有发现-Os
    祭出GOOGLE***搜了一下,终于发现这篇文章说明了-Os的作用:
http://www.linuxjournal.com/article/7269

   原来-Os相当于-O2.5。是使用了所有-O2的优化选项,但又不缩减代码尺寸的方法。
   详细的说明如下:
Level 2.5 (-Os)

The special optimization level (-Os or size) enables all -O2 optimizations that do not increase code size; it puts the emphasis on size over speed. This includes all second-level optimizations, except for the alignment optimizations. The alignment optimizations skip space to align functions, loops, jumps and labels to an address that is a multiple of a power of two, in an architecture-dependent manner. Skipping to these boundaries can increase performance as well as the size of the resulting code and data spaces; therefore, these particular optimizations are disabled. The size optimization level is enabled as:

gcc -Os -o test test.c

In gcc 3.2.2, reorder-blocks is enabled at -Os, but in gcc 3.3.2 reorder-blocks is disabled.

==============================
补充:在GCC的官方文档里又发现了关于-Os的说明:
http://gcc.gnu.org/onlinedocs/gcc-3.4.6/gcc/Optimize-Options.html#Optimize-Options

 



//=============================================

http://blog.csdn.net/ison81/archive/2009/05/07/4158576.aspx

 

backtracefomit-frame-pointer选项

 

事实上gcc的所有级别的优化(-O, -O2, -O3等)都会打开-fomit-frame-pointer,该选项的功能是函数调用时不保存frame指针,在ARM上就是fp,故我们无法按照APCS中的约定来回溯调用栈。但是GDB中仍然可以使用bt命令看到调用栈,为什么?得知GDB v6之后都是支持DWARF2的,也就意味着它可以不依赖fp来回溯调用栈(详见http://gcc.gnu.org/ml/gcc/2003-10/msg00322.html)。

看来想在代码中动态显示调用栈而又不希望使用GDB的朋友,只能在编译时关掉-fomit-frame-pointer了。

 

//==================gcc参数大全:===========================

 


[介绍]
gcc and g++
分别是gnuc & c++编译器 gcc/g++在执行编译工作的时候,总共需要4
1.
预处理,生成.i的文件[预处理器cpp]
2.
将预处理后的文件不转换成汇编语言,生成文件.s[编译器egcs]
3.
有汇编变为目标代码(机器代码)生成.o的文件[汇编器as]
4.
连接目标代码,生成可执行程序[链接器ld]

[参数详解]
-x language filename
 设定文件所使用的语言,使后缀名无效,对以后的多个有效.也就是根据约定C语言的后缀名称是.c的,而C++的后缀名是.C或者.cpp,如果你很个性,决定你的C代码文件的后缀名是.pig哈哈,那你就要用这个参数,这个参数对他后面的文件名都起作用,除非到了下一个参数的使用。
  可以使用的参数吗有下面的这些
  `c', `objective-c', `c-header', `c++', `cpp-output', `assembler', and `assembler-with-cpp'.
  看到英文,应该可以理解的。
  例子用法:
  gcc -x c hello.pig
  
-x none filename
  关掉上一个选项,也就是让gcc根据文件名后缀,自动识别文件类型
  例子用法:
  gcc -x c hello.pig -x none hello2.c
  
-c
  只激活预处理,编译,和汇编,也就是他只把程序做成obj文件
  例子用法:
  gcc -c hello.c
  他将生成.oobj文件

-S
  只激活预处理和编译,就是指把文件编译成为汇编代码。
  例子用法
  gcc -S hello.c
  他将生成.s的汇编代码,你可以用文本编辑器察看

-E
  只激活预处理,这个不生成文件,你需要把它重定向到一个输出文件里面.
  例子用法:
  gcc -E hello.c > pianoapan.txt
  gcc -E hello.c | more
  慢慢看吧,一个hello word也要与处理成800行的代码

-o
  制定目标名称,缺省的时候,gcc编译出来的文件是a.out,很难听,如果你和我有同感,改掉它,哈哈
  例子用法
  gcc -o hello.exe hello.c (,windows用习惯了)
  gcc -o hello.asm -S hello.c

-pipe
  使用管道代替编译中临时文件,在使用非gnu汇编工具的时候,可能有些问题
  gcc -pipe -o hello.exe hello.c

-ansi
  关闭gnu c中与ansi c不兼容的特性,激活ansi c的专有特性(包括禁止一些asm inline typeof关键字,以及UNIX,vax等预处理宏,

-fno-asm
  此选项实现ansi选项的功能的一部分,它禁止将asm,inlinetypeof用作关键字。    
-fno-strict-prototype
  只对g++起作用,使用这个选项,g++将对不带参数的函数,都认为是没有显式的对参数的个数和类型说明,而不是没有参数.
  而gcc无论是否使用这个参数,都将对没有带参数的函数,认为城没有显式说明的类型
  
-fthis-is-varialble
  就是向传统c++看齐,可以使用this当一般变量使用.
  
-fcond-mismatch
  允许条件表达式的第二和第三参数类型不匹配,表达式的值将为void类型
  
-funsigned-char
-fno-signed-char
-fsigned-char
-fno-unsigned-char
  这四个参数是对char类型进行设置,决定将char类型设置成unsigned char(前两个参数)或者 signed char(后两个参数)
  
-include file
  包含某个代码,简单来说,就是便以某个文件,需要另一个文件的时候,就可以用它设定,功能就相当于在代码中使用#include<filename>
  例子用法:
  gcc hello.c -include /root/pianopan.h
  
-imacros file
  将file文件的宏,扩展到gcc/g++的输入文件,宏定义本身并不出现在输入文件中
  
-Dmacro
  相当于C语言中的#define macro
  
-Dmacro=defn
  相当于C语言中的#define macro=defn
  
-Umacro
  相当于C语言中的#undef macro

-undef
  取消对任何非标准宏的定义
  
-Idir
  在你是用#include"file"的时候,gcc/g++会先在当前目录查找你所制定的头文件,如果没有找到,他回到缺省的头文件目录找,如果使用-I制定了目录,
  回先在你所制定的目录查找,然后再按常规的顺序去找.
  对于#include<file>,gcc/g++会到-I制定的目录查找,查找不到,然后将到系统的缺省的头文件目录查找
  
-I-
  就是取消前一个参数的功能,所以一般在-Idir之后使用
  
-idirafter dir
  在-I的目录里面查找失败,讲到这个目录里面查找.
  
-iprefix prefix
-iwithprefix dir
  一般一起使用,-I的目录查找失败,会到prefix+dir下查找
  
-nostdinc
  使编译器不再系统缺省的头文件目录里面找头文件,一般和-I联合使用,明确限定头文件的位置
  
-nostdin C++
  规定不在g++指定的标准路经中搜索,但仍在其他路径中搜索,.此选项在创libg++库使用
  
-C
  在预处理的时候,不删除注释信息,一般和-E使用,有时候分析程序,用这个很方便的
  
-M
  生成文件关联的信息。包含目标文件所依赖的所有源代码你可以用gcc -M hello.c来测试一下,很简单。
  
-MM
  和上面的那个一样,但是它将忽略由#include<file>造成的依赖关系。
  
-MD
  和-M相同,但是输出将导入到.d的文件里面
  
-MMD
  和-MM相同,但是输出将导入到.d的文件里面
  
-Wa,option
  此选项传递option给汇编程序;如果option中间有逗号,就将option分成多个选项,然后传递给会汇编程序
  
-Wl.option
  此选项传递option给连接程序;如果option中间有逗号,就将option分成多个选项,然后传递给会连接程序.

-llibrary
  制定编译的时候使用的库
  例子用法
  gcc -lcurses hello.c
  使用ncurses库编译程序
  
-Ldir
  制定编译的时候,搜索库的路径。比如你自己的库,可以用它制定目录,不然
  编译器将只在标准库的目录找。这个dir就是目录的名称。
  
-O0
-O1
-O2
-O3
  编译器的优化选项的4个级别,-O0表示没有优化,-O1为缺省值,-O3优化级别最高    
-g
  只是编译器,在编译的时候,产生调试信息。
  
-gstabs
  此选项以stabs格式声称调试信息,但是不包括gdb调试信息.
  
-gstabs+
  此选项以stabs格式声称调试信息,并且包含仅供gdb使用的额外调试信息.
  
-ggdb
  此选项将尽可能的生成gdb的可以使用的调试信息.

-static
  此选项将禁止使用动态库,所以,编译出来的东西,一般都很大,也不需要什么
动态连接库,就可以运行.

-share
  此选项将尽量使用动态库,所以生成文件比较小,但是需要系统由动态库.

-traditional
  试图让编译器支持传统的C语言特性

[参考资料]
-Linux/UNIX高级编程
  中科红旗软件技术有限公司编著.清华大学出版社出版
-Gcc man page
  
[ChangeLog]
-2002-08-10
  ver 0.1 发布最初的文档
-2002-08-11
  ver 0.11 修改文档格式
-2002-08-12
  ver 0.12 加入了对静态库,动态库的参数
-2002-08-16
  ver 0.16 增加了gcc编译的4个阶段的命令

运行 gcc/egcs

**********运行 gcc/egcs***********************
  GCC GNU C C++编译器。实际上,GCC能够编译三种语言:CC++ Object CC语言的一种面向对象扩展)。利用 gcc命令可同时编译并连接 C C++ 源程序。
  如果你有两个或少数几个 C 源文件,也可以方便地利用 GCC 编译、连接并生成可执行文件。例如,假设你有两个源文件 main.c factorial.c两个源文件,现在要编译生成一个计算阶乘的程序。
代码:

-----------------------
清单 factorial.c
-----------------------
int factorial (int n)
{
  if (n <= 1)
   return 1;
  else
   return factorial (n - 1) * n;
}
-----------------------
清单 main.c
-----------------------
#include <stdio.h>
#include <unistd.h>

int factorial (int n);
int main (int argc, char **argv)
{
  int n;

  if (argc < 2)
  {
    printf ("Usage: %s n/n", argv [0]);
    return -1;
  }
  else
  {
   n = atoi (argv[1]);
   printf ("Factorial of %d is %d./n", n, factorial (n));
   }
  return 0;
}


-----------------------
利用如下的命令可编译生成可执行文件,并执行程序:
$ gcc -o factorial main.c factorial.c
$ ./factorial 5
Factorial of 5 is 120.

  GCC 可同时用来编译 C 程序和 C++程序。一般来说,C编译器通过源文件的后缀名来判断是 C程序还是 C++ 程序。在 Linux中,C源文件的后缀名为 .c,而 C++源文件的后缀名为 .C .cpp。但是,gcc命令只能编译 C++源文件,而不能自动和 C++程序使用的库连接。因此,通常使用 g++命令来完成 C++ 程序的编译和连接,该程序会自动调用 gcc实现编译。假设我们有一个如下的 C++源文件(hello.C):
#include <iostream>
void main (void)
{
  cout << "Hello, world!" << endl;
}

则可以如下调用 g++ 命令编译、连接并生成可执行文件:
$ g++ -o hello hello.C
$ ./hello
Hello, world!


**********************gcc/egcs 的主要选项*********
gcc 命令的常用选项
选项 解释
-ansi 只支持 ANSI标准的 C语法。这一选项将禁止 GNU C的某些特色,
例如 asm typeof 关键词。
-c 只编译并生成目标文件。
-DMACRO 以字符串“1”定义 MACRO宏。
-DMACRO=DEFN 以字符串“DEFN”定义 MACRO宏。
-E 只运行 C 预编译器。
-g 生成调试信息。GNU 调试器可利用该信息。
-IDIRECTORY 指定额外的头文件搜索路径DIRECTORY
-LDIRECTORY 指定额外的函数库搜索路径DIRECTORY
-lLIBRARY 连接时搜索指定的函数库LIBRARY
-m486 针对 486 进行代码优化。
-o FILE 生成指定的输出文件。用在生成可执行文件时。
-O0 不进行优化处理。
-O -O1 优化生成代码。
-O2 进一步优化。
-O3 -O2 更进一步优化,包括 inline 函数。
-shared 生成共享目标文件。通常用在建立共享库时。
-static 禁止使用共享连接。
-UMACRO 取消对 MACRO宏的定义。
-w 不生成任何警告信息。
-Wall 生成所有警告信息。





Linux GCC常用命令

1简介

2简单编译

2.1预处理

2.2编译为汇编代码(Compilation)

2.3汇编(Assembly)

2.4连接(Linking)

3多个程序文件的编译

4检错

5库文件连接

5.1编译成可执行文件

5.2链接

5.3强制链接时使用静态链接库

1简介

GCC 的意思也只是 GNU C Compiler而已。经过了这么多年的发展,GCC 已经不仅仅能支持 C 语言;它现在还支持 Ada语言、C++ 语言、Java语言、Objective C 语言、Pascal 语言、COBOL语言,以及支持函数式编程和逻辑编程的 Mercury语言,等等。而 GCC 也不再单只是 GNU C 语言编译器的意思了,而是变成了 GNU Compiler Collection也即是 GNU 编译器家族的意思了。另一方面,说到 GCC对于操作系统平台及硬件平台支持,概括起来就是一句话:无所不在。

2简单编译

示例程序如下:

//test.c

#include <stdio.h>

int main(void)

{

    printf("Hello World!\n");

    return 0;

}

这个程序,一步到位的编译指令是:

gcc test.c -o test



实质上,上述编译过程是分为四个阶段进行的,即预处理(也称预编译,Preprocessing)、编译(Compilation)、汇编 (Assembly)和连接(Linking)

2.1预处理

gcc -E test.c -o test.i gcc -E test.c

 

可以输出test.i文件中存放着test.c经预处理之后的代码。打开test.i文件,看一看,就明白了。后面那条指令,是直接在命令行窗口中输出预处理后的代码.

gcc-E选项,可以让编译器在预处理后停止,并输出预处理结果。在本例中,预处理结果就是将stdio.h文件中的内容插入到test.c中了。

2.2编译为汇编代码(Compilation)

预处理之后,可直接对生成的test.i文件编译,生成汇编代码:

gcc -S test.i -o test.s

gcc-S选项,表示在程序编译期间,在生成汇编代码后,停止,-o输出汇编代码文件。

2.3汇编(Assembly)

对于上一小节中生成的汇编代码文件test.sgas汇编器负责将其编译为目标文件,如下:

gcc -c test.s -o test.o

2.4连接(Linking)

gcc连接器是gas提供的,负责将程序的目标文件与所需的所有附加的目标文件连接起来,最终生成可执行文件。附加的目标文件包括静态连接库和动态连接库。

对于上一小节中生成的test.o,将其与C标准输入输出库进行连接,最终生成程序test

gcc test.o -o test

 

在命令行窗口中,执行./test,让它说HelloWorld吧!

3多个程序文件的编译

通常整个程序是由多个源文件组成的,相应地也就形成了多个编译单元,使用GCC能够很好地管理这些编译单元。假设有一个由test1.c test2.c两个源文件组成的程序,为了对它们进行编译,并最终生成可执行程序test,可以使用下面这条命令:

gcc test1.c test2.c -o test

如果同时处理的文件不止一个,GCC仍然会按照预处理、编译和链接的过程依次进行。如果深究起来,上面这条命令大致相当于依次执行如下三条命令:

gcc -c test1.c -o test1.o

gcc -c test2.c -o test2.o

gcc test1.o test2.o -o test



4检错

gcc -pedantic illcode.c -o illcode

-pedantic编译选项并不能保证被编译程序与ANSI/ISO C标准的完全兼容,它仅仅只能用来帮助Linux程序员离这个目标越来越近。或者换句话说,-pedantic选项能够帮助程序员发现一些不符合 ANSI/ISO C标准的代码,但不是全部,事实上只有ANSI/ISO C语言标准中要求进行编译器诊断的那些情况,才有可能被GCC发现并提出警告。

除了-pedantic之外,GCC还有一些其它编译选项也能够产生有用的警告信息。这些选项大多以-W开头,其中最有价值的当数-Wall了,使用它能够使GCC产生尽可能多的警告信息。

gcc -Wall illcode.c -o illcode

GCC给出的警告信息虽然从严格意义上说不能算作错误,但却很可能成为错误的栖身之所。一个优秀的Linux程序员应该尽量避免产生警告信息,使自己的代码始终保持标准、健壮的特性。所以将警告信息当成编码错误来对待,是一种值得赞扬的行为!所以,在编译程序时带上-Werror选项,那么GCC会在所有产生警告的地方停止编译,迫使程序员对自己的代码进行修改,如下:

gcc -Werror test.c -o test

 


5库文件连接

开发软件时,完全不使用第三方函数库的情况是比较少见的,通常来讲都需要借助许多函数库的支持才能够完成相应的功能。从程序员的角度看,函数库实际上就是一些头文件(.h)和库文件(so、或libdll)的集合。。虽然Linux下的大多数函数都默认将头文件放到/usr/include/目录下,而库文件则放到/usr/lib/目录下;Windows所使用的库文件主要放在Visual Stido的目录下的includelib,以及系统文件夹下。但也有的时候,我们要用的库不再这些目录下,所以GCC在编译时必须用自己的办法来查找所需要的头文件和库文件。

例如我们的程序test.c是在linux上使用c连接mysql,这个时候我们需要去mysql官网下载MySQL ConnectorsC库,下载下来解压之后,有一个include文件夹,里面包含mysql connectors的头文件,还有一个lib文件夹,里面包含二进制so文件libmysqlclient.so

其中inclulde文件夹的路径是/usr/dev/mysql/include,lib文件夹是/usr/dev/mysql/lib

 

5.1编译成可执行文件

首先我们要进行编译test.c为目标文件,这个时候需要执行

gcc –c –I /usr/dev/mysql/include test.c –o test.o

5.2链接

最后我们把所有目标文件链接成可执行文件:

gcc –L /usr/dev/mysql/lib –lmysqlclient test.o –o test

Linux下的库文件分为两大类分别是动态链接库(通常以.so结尾)和静态链接库(通常以.a结尾),二者的区别仅在于程序执行时所需的代码是在运行时动态加载的,还是在编译时静态加载的。

5.3强制链接时使用静态链接库

默认情况下, GCC在链接时优先使用动态链接库,只有当动态链接库不存在时才考虑使用静态链接库,如果需要的话可以在编译时加上-static选项,强制使用静态链接库。

/usr/dev/mysql/lib目录下有链接时所需要的库文件libmysqlclient.solibmysqlclient.a,为了让GCC在链接时只用到静态链接库,可以使用下面的命令:

gcc –L /usr/dev/mysql/lib –static –lmysqlclient test.o –o test

 

静态库链接时搜索路径顺序:

1. ld会去找GCC命令中的参数-L
2. 再找gcc的环境变量LIBRARY_PATH
3. 再找内定目录 /lib /usr/lib /usr/local/lib这是当初compile gcc时写在程序内的

动态链接时、执行时搜索路径顺序:

1. 编译目标代码时指定的动态库搜索路径
2.
环境变量LD_LIBRARY_PATH指定的动态库搜索路径
3.
配置文件/etc/ld.so.conf中指定的动态库搜索路径
4.
默认的动态库搜索路径/lib
5.
默认的动态库搜索路径/usr/lib

有关环境变量:
LIBRARY_PATH
环境变量:指定程序静态链接库文件搜索路径
LD_LIBRARY_PATH
环境变量:指定程序动态链接库文件搜索路径