Description
Input
第1行为一个整数N(1<=N<=15),即野人的数目。
第2行到第N+1每行为三个整数Ci, Pi, Li表示每个野人所住的初始洞穴编号,每年走过的洞穴数及寿命值。
(1<=Ci,Pi<=100, 0<=Li<=10^6 )
Output
仅包含一个数M,即最少可能的山洞数。输入数据保证有解,且M不大于10^6。
Sample Input
3
1 3 4
2 7 3
3 2 1
1 3 4
2 7 3
3 2 1
Sample Output
6
//该样例对应于题目描述中的例子。
//该样例对应于题目描述中的例子。
HINT
Source
正解:搜索+扩展欧几里得
解题报告:
今天上午考试的T2,一上来一看,这不是板子题吗?然后就没有然后了...
考虑枚举一共有多少个山洞,每次对于当前的山洞个数,两两check一下,看一下是否会冲突。check的方式很简单,就是直接解他们相遇的不定方程,很容易根据他们的信息得到一个方程,看一下最小正整数解是否在他们的寿命范围内。可以发现这样做的理论复杂度是TLE的,但是很显然我们每次check复杂度远远不到n^2,所以不会T。
//It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int inf = (<<);
const int MAXN = +;
int n,minl,a,b,c;
int ini[MAXN],p[MAXN],L[MAXN];
//c[i]+p[i]*x=c[j]+p[j]*x-now*y ==> (c[i]-c[j])*x+now*y=c[j]-c[i] inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline int gcd(int x,int y){
if(y==) return x;
return gcd(y,x%y);
} inline void extend_gcd(int a,int b,int &x,int &y){
if(b==) {
x=;
y=;
return ;
}
extend_gcd(b,a%b,x,y);
int lin=x; x=y;
y=lin-(a/b)*y;
} inline void check(int now){//两两检查合法性
int gong,x,y;
for(int i=;i<n;i++)
for(int j=i+;j<=n;j++) {
a=(p[i]-p[j]); b=now; c=(ini[j]-ini[i]); gong=gcd(a,b);
if(c%gong!=) continue; //无解
a=a/gong; b=b/gong; c=c/gong;
extend_gcd(a,b,x,y);
if(b<) b=-b;
x=x*c; x%=b; x+=b; x+=b; x%=b;
if(x<=L[i] && x<=L[j]) return ;
}
printf("%d",now);
exit();
} inline void work(){
n=getint(); for(int i=;i<=n;i++) ini[i]=getint(),p[i]=getint(),L[i]=getint();
for(int i=;i<=n;i++) minl=max(minl,ini[i]);//至少是ini[i]的最大值
for(;;minl++) check(minl);
} int main()
{
work();
return ;
}