这是Combinations 组合项 的延伸,在这里,我们允许不同的顺序出现,那么新的题目要求如下:
Given two integers n and k, return all possible combinations of k numbers out of 1 ... n.
For example,
If n = 4 and k = 2, a solution is:
[
[1,2],
[1,3],
[1,4],
[2,1],
[2,3],
[2,4],
[3,1],
[3,2],
[3,4],
[4,1],
[4,2],
[4,3],
]
这题的解法其实只是在原题Combinations 组合项 的基础上做很小的改动即可,这里我们为了避免重复项,引入了visited数字来标记某个数组是否出现过,然后就是递归中的循环不是从level开始,改为每次从0开始,这样就能把所有不同的排列方式都找出来,代码如下:
class Solution {
public:
vector<vector<int> > combine(int n, int k) {
vector<vector<int> > res;
vector<int> out;
vector<int> visited(n, );
combineDFS(n, k, , visited, out, res);
return res;
}
void combineDFS(int n, int k, int level, vector<int> &visited, vector<int> &out, vector<vector<int> > &res) {
if (out.size() == k) res.push_back(out);
else {
for (int i = ; i < n; ++i) {
if (visited[i] == ) {
visited[i] = ;
out.push_back(i + );
combineDFS(n, k, level + , visited, out, res);
out.pop_back();
visited[i] = ;
}
}
}
}
};