LCT维护子树信息的思路总结与其它问题详见我的LCT总结
思路分析
动态连边,LCT题目跑不了了。然而这题又有点奇特的地方。
我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘积。
掌握了LCT如何维护虚子树信息和后,做法就很清晰了。split(x,y)后,输出x的虚子树和+1与y的虚子树和+1的乘积;或者,(以y为根)输出x的子树总和与y的子树总和减去x的子树总和的乘积。
代码如下(这次我试着写了一个单旋"Spaly",好像常数还小不少。。。。。。)
#include<cstdio>
#include<cstdlib>
#define R register int
#define I inline void
const int N=100009;
int f[N],c[N][2],si[N],s[N];
bool r[N];
#define lc c[x][0]
#define rc c[x][1]
inline bool nroot(R x){return c[f[x]][0]==x||c[f[x]][1]==x;}
I pushup(R x){
s[x]=s[lc]+s[rc]+si[x]+1;
}
I pushdown(R x){
if(r[x]){
R t=lc;lc=rc;rc=t;
r[lc]^=1;r[rc]^=1;r[x]=0;
}
}
I pushall(R x){
if(nroot(x))pushall(f[x]);
pushdown(x);
}
I rotate(R x){
R y=f[x],z=f[y],k=c[y][1]==x,w=c[x][!k];
if(nroot(y))c[z][c[z][1]==y]=x;c[x][!k]=y;c[y][k]=w;
f[w]=y;f[y]=x;f[x]=z;
pushup(y);
}
I splay(R x){//请忽略这个spaly
pushall(x);
while(nroot(x))rotate(x);
pushup(x);
}
I access(R x){
for(R y=0;x;x=f[y=x]){
splay(x);
si[x]+=s[rc];
si[x]-=s[rc=y];
//pushup(x);试着去掉,发现对答案无影响
}
}
I makeroot(R x){
access(x);splay(x);
r[x]^=1;
}
I split(R x,R y){
makeroot(x);
access(y);splay(y);
}
I link(R x,R y){
split(x,y);
si[f[x]=y]+=s[x];
pushup(y);
}//LCT模板到此结束
#define G ch=getchar()
#define gc G;while(ch<'-')G
#define in(z) gc;z=ch&15;G;while(ch>'-')z*=10,z+=ch&15,G;
int main(){
register char ch;
register bool fl;
R n,q,u,v;
in(n);in(q);
for(R i=1;i<=n;++i)s[i]=1;
while(q--){
gc;fl=ch=='A';in(u);in(v);
if(fl)link(u,v);
else{
split(u,v);
printf("%lld\n",(long long)(si[u]+1)*(si[v]+1));//可以换成上面提到的另一种
}
}
return 0;
}