有的时候PG给出的执行计划由于很多原因并不是最优的,需要手动指定执行路径时我们可以加载pg_hint_plan这个插件。
1 安装插件
预先安装Postgresql10.7
1
2
3
4
5
6
|
cd postgresql-10.7/contrib/
wget https://github.com/ossc-db/pg_hint_plan/archive/REL10_1_3_3.tar.gz
tar xzvf pg_hint_plan-REL10_1_3_3.tar.gz
cd pg_hint_plan-REL10_1_3_3
make
make install
|
检查文件
1
2
3
4
5
6
|
cd $PGHOME
ls lib/pg_hint_plan.so
lib/pg_hint_plan.so
ls share/extension/
pg_hint_plan --1.3.0--1.3.1.sql pg_hint_plan--1.3.2--1.3.3.sql pg_hint_plan.control plpgsql.control
pg_hint_plan --1.3.1--1.3.2.sql pg_hint_plan--1.3.3.sql plpgsql--1.0.sql plpgsql--unpackaged--1.0.sql
|
2 加载插件
2.1 当前会话加载
1
|
LOAD 'pg_hint_plan' ;
|
注意这样加载只在当前回话生效。
2.2 用户、库级自动加载
1
2
|
alter user postgres set session_preload_libraries= 'pg_hint_plan' ;
alter database postgres set session_preload_libraries= 'pg_hint_plan' ;
|
配置错了的话就连不上数据库了!
如果配置错了,连接template1库执行
1
2
|
alter database postgres reset session_preload_libraries;
alter user postgres reset session_preload_libraries;
|
2.3 cluster级自动加载
1
|
在postgresql.conf中修改shared_preload_libraries=‘pg_hint_plan'
|
重启数据库
3 检查是否已经加载
pg_hint_plan加载后在extension里面是看不到的,所以需要确认插件是否已经加载
1
2
3
4
|
show session_preload_libraries;
session_preload_libraries
---------------------------
pg_hint_plan
|
或者
1
|
show shared_preload_libraries;
|
如果使用load方式加载不需要检查。
4 使用插件定制执行计划
4.1 初始化测试数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
create table t1 (id int , t int , name varchar (255));
create table t2 (id int , salary int );
create table t3 (id int , age int );
insert into t1 values (1,200, 'jack' );
insert into t1 values (2,300, 'tom' );
insert into t1 values (3,400, 'john' );
insert into t2 values (1,40000);
insert into t2 values (2,38000);
insert into t2 values (3,18000);
insert into t3 values (3,38);
insert into t3 values (2,55);
insert into t3 values (1,12);
explain analyze select * from t1 left join t2 on t1.id=t2.id left join t3 on t1.id=t3.id;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------
Hash Right Join (cost=89.82..337.92 rows =17877 width=540) (actual time =0.053..0.059 rows =3 loops=1)
Hash Cond: (t3.id = t1.id)
-> Seq Scan on t3 (cost=0.00..32.60 rows =2260 width=8) (actual time =0.002..0.002 rows =3 loops=1)
-> Hash (cost=70.05..70.05 rows =1582 width=532) (actual time =0.042..0.043 rows =3 loops=1)
Buckets: 2048 Batches: 1 Memory Usage: 17kB
-> Hash Right Join (cost=13.15..70.05 rows =1582 width=532) (actual time =0.034..0.039 rows =3 loops=1)
Hash Cond: (t2.id = t1.id)
-> Seq Scan on t2 (cost=0.00..32.60 rows =2260 width=8) (actual time =0.002..0.002 rows =3 loops=1)
-> Hash (cost=11.40..11.40 rows =140 width=524) (actual time =0.017..0.017 rows =3 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Seq Scan on t1 (cost=0.00..11.40 rows =140 width=524) (actual time =0.010..0.011 rows =3 loops=1)
Planning time : 0.154 ms
Execution time : 0.133 ms
|
创建索引
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
create index idx_t1_id on t1(id);
create index idx_t2_id on t2(id);
create index idx_t3_id on t3(id);
explain analyze select * from t1 left join t2 on t1.id=t2.id left join t3 on t1.id=t3.id;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------
Hash Left Join (cost=2.14..3.25 rows =3 width=540) (actual time =0.045..0.047 rows =3 loops=1)
Hash Cond: (t1.id = t3.id)
-> Hash Left Join (cost=1.07..2.14 rows =3 width=532) (actual time =0.030..0.032 rows =3 loops=1)
Hash Cond: (t1.id = t2.id)
-> Seq Scan on t1 (cost=0.00..1.03 rows =3 width=524) (actual time =0.005..0.006 rows =3 loops=1)
-> Hash (cost=1.03..1.03 rows =3 width=8) (actual time =0.007..0.007 rows =3 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Seq Scan on t2 (cost=0.00..1.03 rows =3 width=8) (actual time =0.002..0.003 rows =3 loops=1)
-> Hash (cost=1.03..1.03 rows =3 width=8) (actual time =0.005..0.005 rows =3 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Seq Scan on t3 (cost=0.00..1.03 rows =3 width=8) (actual time =0.002..0.002 rows =3 loops=1)
Planning time : 0.305 ms
Execution time : 0.128 ms
|
4.2 强制走index scan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
/*+ indexscan(t1 idx_d)
/*+ indexscan(t1 idx_t1_id)
explain (analyze,buffers) select * from t1 where id=2;
QUERY PLAN
----------------------------------------------------------------------------------------------
Seq Scan on t1 (cost=0.00..1.04 rows =1 width=524) (actual time =0.011..0.013 rows =1 loops=1)
Filter: (id = 2)
Rows Removed by Filter: 2
Buffers: shared hit=1
Planning time : 0.058 ms
Execution time : 0.028 ms
explain (analyze,buffers) /*+ indexscan(t1) */ select * from t1 where id=2;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------
Index Scan using idx_t1_id on t1 (cost=0.13..8.15 rows =1 width=524) (actual time =0.044..0.046 rows =1 loops=1)
Index Cond: (id = 2)
Buffers: shared hit=1 read =1
Planning time : 0.145 ms
Execution time : 0.072 ms
explain (analyze,buffers) /*+ indexscan(t1 idx_t1_id) */ select * from t1 where id=2;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------
Index Scan using idx_t1_id on t1 (cost=0.13..8.15 rows =1 width=524) (actual time =0.016..0.017 rows =1 loops=1)
Index Cond: (id = 2)
Buffers: shared hit=2
Planning time : 0.079 ms
Execution time : 0.035 ms
|
4.3 强制多条件组合
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
/*+ indexscan(t2) indexscan(t1 idx_t1_id) */
/*+ seqscan(t2) indexscan(t1 idx_t1_id) */
explain analyze SELECT * FROM t1 JOIN t2 ON (t1.id = t2.id);
QUERY PLAN
--------------------------------------------------------------------------------------------------------
Hash Join (cost=1.07..2.14 rows =3 width=532) (actual time =0.018..0.020 rows =3 loops=1)
Hash Cond: (t1.id = t2.id)
-> Seq Scan on t1 (cost=0.00..1.03 rows =3 width=524) (actual time =0.006..0.007 rows =3 loops=1)
-> Hash (cost=1.03..1.03 rows =3 width=8) (actual time =0.005..0.005 rows =3 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Seq Scan on t2 (cost=0.00..1.03 rows =3 width=8) (actual time =0.001..0.003 rows =3 loops=1)
Planning time : 0.114 ms
Execution time : 0.055 ms
(8 rows )
|
组合两个条件走indexscan
1
2
3
4
5
6
7
|
/*+ indexscan(t2) indexscan(t1 idx_t1_id) */explain analyze SELECT * FROM t1 JOIN t2 ON (t1.id = t2.id);
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------
Merge Join (cost=0.26..24.40 rows =3 width=532) (actual time =0.047..0.053 rows =3 loops=1)
Merge Cond: (t1.id = t2.id)
-> Index Scan using idx_t1_id on t1 (cost=0.13..12.18 rows =3 width=524) (actual time =0.014..0.015 rows =3 loops=1)
-> Index Scan using idx_t2_id on t2 (cost=0.13..12.18 rows =3 width=8) (actual time =0.026..0.028 rows =3 loops=1)
|
组合两个条件走indexscan+seqscan
1
2
3
4
5
6
7
8
9
|
/*+ seqscan(t2) indexscan(t1 idx_t1_id) */explain analyze SELECT * FROM t1 JOIN t2 ON (t1.id = t2.id);
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------
Nested Loop (cost=0.13..13.35 rows =3 width=532) (actual time =0.025..0.032 rows =3 loops=1)
Join Filter: (t1.id = t2.id)
Rows Removed by Join Filter: 6
-> Index Scan using idx_t1_id on t1 (cost=0.13..12.18 rows =3 width=524) (actual time =0.016..0.018 rows =3 loops=1)
-> Materialize (cost=0.00..1.04 rows =3 width=8) (actual time =0.002..0.003 rows =3 loops=3)
-> Seq Scan on t2 (cost=0.00..1.03 rows =3 width=8) (actual time =0.004..0.005 rows =3 loops=1)
|
4.4 强制指定join method
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
/*+ NestLoop(t1 t2) MergeJoin(t1 t2 t3) Leading(t1 t2 t3) */
/*+ NestLoop(t1 t2 t3) MergeJoin(t2 t3) Leading(t1 (t2 t3)) */
explain analyze select * from t1 left join t2 on t1.id=t2.id left join t3 on t1.id=t3.id;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------
Hash Left Join (cost=2.14..3.25 rows =3 width=540) (actual time =0.053..0.056 rows =3 loops=1)
Hash Cond: (t1.id = t3.id)
-> Hash Left Join (cost=1.07..2.14 rows =3 width=532) (actual time =0.036..0.038 rows =3 loops=1)
Hash Cond: (t1.id = t2.id)
-> Seq Scan on t1 (cost=0.00..1.03 rows =3 width=524) (actual time =0.007..0.007 rows =3 loops=1)
-> Hash (cost=1.03..1.03 rows =3 width=8) (actual time =0.009..0.009 rows =3 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Seq Scan on t2 (cost=0.00..1.03 rows =3 width=8) (actual time =0.002..0.003 rows =3 loops=1)
-> Hash (cost=1.03..1.03 rows =3 width=8) (actual time =0.006..0.006 rows =3 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Seq Scan on t3 (cost=0.00..1.03 rows =3 width=8) (actual time =0.002..0.003 rows =3 loops=1)
|
强制走循环嵌套连接
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
/*+ NestLoop(t1 t2) MergeJoin(t1 t2 t3) Leading(t1 t2 t3) */
explain analyze select * from t1 left join t2 on t1.id=t2.id left join t3 on t1.id=t3.id;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------
Merge Left Join (cost=3.28..3.34 rows =3 width=540) (actual time =0.093..0.096 rows =3 loops=1)
Merge Cond: (t1.id = t3.id)
-> Sort (cost=2.23..2.23 rows =3 width=532) (actual time =0.077..0.078 rows =3 loops=1)
Sort Key : t1.id
Sort Method: quicksort Memory: 25kB
-> Nested Loop Left Join (cost=0.00..2.20 rows =3 width=532) (actual time =0.015..0.020 rows =3 loops=1)
Join Filter: (t1.id = t2.id)
Rows Removed by Join Filter: 6
-> Seq Scan on t1 (cost=0.00..1.03 rows =3 width=524) (actual time =0.005..0.005 rows =3 loops=1)
-> Materialize (cost=0.00..1.04 rows =3 width=8) (actual time =0.002..0.003 rows =3 loops=3)
-> Seq Scan on t2 (cost=0.00..1.03 rows =3 width=8) (actual time =0.002..0.003 rows =3 loops=1)
-> Sort (cost=1.05..1.06 rows =3 width=8) (actual time =0.012..0.013 rows =3 loops=1)
Sort Key : t3.id
Sort Method: quicksort Memory: 25kB
-> Seq Scan on t3 (cost=0.00..1.03 rows =3 width=8) (actual time =0.002..0.003 rows =3 loops=1)
|
控制连接顺序
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
/*+ NestLoop(t1 t2 t3) MergeJoin(t2 t3) Leading(t1 (t2 t3)) */
explain analyze select * from t1 left join t2 on t1.id=t2.id left join t3 on t1.id=t3.id;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------
Nested Loop Left Join (cost=1.07..3.31 rows =3 width=540) (actual time =0.036..0.041 rows =3 loops=1)
Join Filter: (t1.id = t3.id)
Rows Removed by Join Filter: 6
-> Hash Left Join (cost=1.07..2.14 rows =3 width=532) (actual time =0.030..0.032 rows =3 loops=1)
Hash Cond: (t1.id = t2.id)
-> Seq Scan on t1 (cost=0.00..1.03 rows =3 width=524) (actual time =0.008..0.009 rows =3 loops=1)
-> Hash (cost=1.03..1.03 rows =3 width=8) (actual time =0.007..0.007 rows =3 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Seq Scan on t2 (cost=0.00..1.03 rows =3 width=8) (actual time =0.002..0.004 rows =3 loops=1)
-> Materialize (cost=0.00..1.04 rows =3 width=8) (actual time =0.001..0.002 rows =3 loops=3)
-> Seq Scan on t3 (cost=0.00..1.03 rows =3 width=8) (actual time =0.002..0.003 rows =3 loops=1)
|
4.5 控制单条SQL的cost
1
2
3
4
5
6
7
|
/*+ set (seq_page_cost 20.0) seqscan(t1) */
/*+ set (seq_page_cost 20.0) seqscan(t1) */explain analyze select * from t1 where id > 1;
QUERY PLAN
-----------------------------------------------------------------------------------------------
Seq Scan on t1 (cost=0.00..20.04 rows =1 width=524) (actual time =0.011..0.013 rows =2 loops=1)
Filter: (id > 1)
Rows Removed by Filter: 1
|
set seq_page_cost 200,注意下面的cost已经变成了200.04
1
2
3
4
5
6
|
/*+ set (seq_page_cost 200.0) seqscan(t1) */explain analyze select * from t1 where id > 1;
QUERY PLAN
------------------------------------------------------------------------------------------------
Seq Scan on t1 (cost=0.00..200.04 rows =1 width=524) (actual time =0.010..0.011 rows =2 loops=1)
Filter: (id > 1)
Rows Removed by Filter: 1
|
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。
原文链接:https://blog.csdn.net/jackgo73/article/details/89711523