实现 pow(x, n) ,即计算 x 的 n 次幂函数。
示例 1:
输入: 2.00000, 10
输出: 1024.00000
示例 2:
输入: 2.10000, 3
输出: 9.26100
示例 3:
输入: 2.00000, -2
输出: 0.25000
解释: 2^(-2) = 1/(2^2) = 1/4 = 0.25
说明:
-100.0 < x < 100.0
n 是 32 位有符号整数,其数值范围是 [−2^31, 2^31 − 1] 。
显然,由于 $n$ 是一个整数,可以使用快速幂来做,对于 $n<0$ 的情况,我们可以先求出 $x^{|n|}$,最后返回 $1/x^{|n|}$ 即可。
AC代码:
class Solution
{
public:
double myPow(double x,int n)
{
bool flag=(n>=);
long long p=abs((long long)n);
double res=, base=x;
while(p)
{
if(p&) res*=base;
base*=base, p>>=;
}
if(flag) return res;
else return 1.0/res;
}
};
简单解释快速幂的这段代码,
我现在要计算的是 $base$ 的 $p$ 次方,那么只要当 $p>0$,我就要继续计算:
如果 $p$ 是个偶数,那么显然 $base^p$ 能转化成 $(base^2)^{p/2}$,那么我们现在转而计算 $base^2$ 的 $p/2$ 次方;
如果 $p$ 是个奇数,那么显然 $base^p$ 能转化成 $(base^2)^{(p-1)/2} \cdot base$,那么我们依然要转而计算 $base^2$ 的 $p/2$ 次方;
换句话说,快速幂有如下递归版本:
double fpow(double b,long long p)
{
if(p==) return 1.0;
return fpow(b*b,p/)*(p&?b:);
}
我们将上述代码写成非递归形式即为:
double fpow(double b,long long p)
{
double res=;
while(p)
{
if(p&) res*=b;
b*=b, p/=;
}
return res;
}