题目
分析
典型的树链剖分题,
树链剖分学习资料
Code
#include <bits/stdc++.h>
using namespace std;
const int maxn = 30000 + 131;
struct Edge {
int Next;
int To;
}edge[maxn<<1];
int Head[maxn], tot, n;
///以下是重链数据定义
int top[maxn]; //重链的顶点
int deep[maxn]; //树上节点的深度
int Pre[maxn]; //父节点
int size[maxn]; //子树节点大小
int son[maxn]; //重链中节点的子节点
///以下有关离散到线段树数据定义
int t_s[maxn]; //树上的点离散到线段树
int s_t[maxn]; //线段树映射回树上的点。
int pos;
//题目数据
int w[maxn];
void INIT() {
tot = pos = 0;
memset(son, -1, sizeof(son));
memset(Head,-1, sizeof(Head));
}
////
void Addedge(int from, int to) {
edge[tot].To = to;
edge[tot].Next = Head[from];
Head[from] = tot++;
}
void Getlist(int root, int pre, int d) { //获得重链
deep[root] = d;
Pre[root] = pre;
size[root] = 1;
for(int i = Head[root]; ~i; i = edge[i].Next) {
int v = edge[i].To;
if(v != pre) {
Getlist(v, root, d+1);
size[root] += size[v]; //累加size
if(son[root] == -1 || size[son[root]] < size[v])
son[root] = v; //更新重链子节点
}
}
}
////离散点到线段树上
void Lisan_TtoS(int u, int root) {
top[u] = root;
t_s[u] = ++pos;
s_t[t_s[u]] = u;
if(son[u] == -1) return ;
Lisan_TtoS(son[u], root);
for(int i = Head[u]; ~i; i = edge[i].Next) {
int v = edge[i].To;
if(v != son[u] && v != Pre[u])
Lisan_TtoS(v,v); //新的重链开始.
}
}
////线段树
int Sum[maxn << 2];
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
void PushUp(int rt) {
Sum[rt] = Sum[rt<<1] + Sum[rt<<1|1];
}
void Build(int l, int r, int rt) {
if(l == r) {
Sum[rt] = w[s_t[l]];
/*cout << "This is tree idx:" << s_t[l] \
<< " values:" << w[s_t[l]] << endl;*/
return ;
}
int m = (l + r) >> 1;
Build(lson);
Build(rson);
PushUp(rt);
}
void Update(int pos, int val, int l, int r, int rt) {
if(l == r) {
Sum[rt] = val;
//cout << "This is the tree id: " << s_t[l] << endl;
return ;
}
int m = (l + r) >> 1;
if(pos <= m) Update(pos, val, lson);
else Update(pos, val, rson);
PushUp(rt);
}
int Query(int L, int R, int l, int r, int rt) {
//cout << "seg l : " << l << " r : " << r ;
//cout << " Find L:" << L << " R: " << R << endl;
if(L <= l && r <= R) {
//cout << "Had add : " << Sum[rt] << endl;
return Sum[rt];
}
int m = (l + r) >> 1;
int ret = 0;
if(L <= m) ret += Query(L, R, lson);
if(R > m) ret += Query(L, R, rson);
return ret;
}
////查询(u,v)
int Find(int u, int v) { /// u to v
int fa_u = top[u]; /// u总是更深的点.
int fa_v = top[v];
int ret = 0;
while(fa_u != fa_v) {
if(deep[fa_u] < deep[fa_v]) {
swap(u, v);
swap(fa_v,fa_u);
}
//cout << "This is the list :" << fa_u << "->" << u << endl;
//cout << "This is the Segm :" << t_s[fa_u] << "->" << t_s[u] << endl;
ret += Query(t_s[fa_u], t_s[u], 1, n, 1);
u = Pre[fa_u];
fa_u = top[u];
}
// 点, 所以会有两点重合的情况。
// 边的处理, 可以理解 i 点 to j 点的边 v 就是 j 点的权值
// root 处理为最小只即可 or (0) or 各种适合值。
if(deep[u] > deep[v]) swap(u, v);
ret += Query(t_s[u], t_s[v], 1, n, 1);
return ret;
}
int main() {
int T;
scanf("%d",&T);
for(int kase = 1; kase <= T; ++kase) {
scanf("%d",&n);
INIT();
for(int i = 1; i <= n; ++i)
scanf("%d",w+i);
int u, v;
for(int i = 1; i < n; ++i) {
scanf("%d%d",&u, &v);
u++, v++;
Addedge(u, v);
Addedge(v, u);
}
Getlist(1, -1, 0);
Lisan_TtoS(1,1);
Build(1, n, 1);
printf("Case %d:\n",kase);
int q;
scanf("%d",&q);
for(int i = 0; i < q; ++i) {
int op;
scanf("%d%d%d",&op,&u,&v);
if(op == 1) {
Update(t_s[++u], v, 1, n, 1);
}
else {
u++, v++;
printf("%d\n", Find(u, v));
}
}
}
return 0;
}