十九、Hadoop学记笔记————Hbase和MapReduce

时间:2022-03-14 16:03:08

概要:

十九、Hadoop学记笔记————Hbase和MapReduce

hadoop和hbase导入环境变量:

十九、Hadoop学记笔记————Hbase和MapReduce

要运行Hbase中自带的MapReduce程序,需要运行如下指令,可在官网中找到:

十九、Hadoop学记笔记————Hbase和MapReduce

如果遇到如下问题,则说明Hadoop的MapReduce没有权限访问Hbase的jar包:

十九、Hadoop学记笔记————Hbase和MapReduce

参考官网可解决:

十九、Hadoop学记笔记————Hbase和MapReduce

运行后解决:

十九、Hadoop学记笔记————Hbase和MapReduce

导入数据运行指令:十九、Hadoop学记笔记————Hbase和MapReduce

tsv是指以制表符为分隔符的文件

先创建测试数据,创建user文件:

十九、Hadoop学记笔记————Hbase和MapReduce

上传至hdfs,并且启动hbase shell:

十九、Hadoop学记笔记————Hbase和MapReduce

创建表:

十九、Hadoop学记笔记————Hbase和MapReduce

之后导入数据:

十九、Hadoop学记笔记————Hbase和MapReduce

还有一些其他的方法,比如rowcounter统计行数:

十九、Hadoop学记笔记————Hbase和MapReduce

接下来演示用sqoop将mysql数据考入hbase,构建测试数据:

十九、Hadoop学记笔记————Hbase和MapReduce

十九、Hadoop学记笔记————Hbase和MapReduce

使用import,需要先配置hbase环境变量:

十九、Hadoop学记笔记————Hbase和MapReduce

十九、Hadoop学记笔记————Hbase和MapReduce

Hbase表数据的迁移:

十九、Hadoop学记笔记————Hbase和MapReduce

十九、Hadoop学记笔记————Hbase和MapReduce

之后编写MapReduce程序,代码如下:

package com.tyx.hbase.mr;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class Tab2TabMapReduce extends Configured implements Tool { // mapper class
public static class TabMapper extends TableMapper<Text, Put> {
private Text rowkey = new Text(); @Override
protected void map(ImmutableBytesWritable key, Result value,Context context)
throws IOException, InterruptedException {
byte[] bytes = key.get();
rowkey.set(Bytes.toString(bytes)); Put put = new Put(bytes); for (Cell cell : value.rawCells()) {
// add cell
if("info".equals(Bytes.toString(CellUtil.cloneFamily(cell)))) {
if("name".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))) {
put.add(cell);
}
}
} context.write(rowkey, put);
}
} // reduce class
public static class TabReduce extends TableReducer<Text,Put, ImmutableBytesWritable> {
@Override
protected void reduce(Text key, Iterable<Put> values,Context context)
throws IOException, InterruptedException {
for (Put put : values) {
context.write(null, put);
} }
} @Override
public int run(String[] args) throws Exception {
//create job
Job job = Job.getInstance(this.getConf(), this.getClass().getSimpleName()); // set run class
job.setJarByClass(this.getClass()); Scan scan = new Scan();
scan.setCaching(500);
scan.setCacheBlocks(false); // set mapper
TableMapReduceUtil.initTableMapperJob(
"tab1", // input table
scan , // scan instance
TabMapper.class, // set mapper class
Text.class, // mapper output key
Put.class, //mapper output value
job // set job
); TableMapReduceUtil.initTableReducerJob(
"tab2" , // output table
TabReduce.class, // set reduce class
job // set job
); job.setNumReduceTasks(1); boolean b = job.waitForCompletion(true); if(!b) {
System.err.print("error with job!!!");
} return 0;
} public static void main(String[] args) throws Exception { //create config
Configuration config = HBaseConfiguration.create(); //submit job
int status = ToolRunner.run(config, new Tab2TabMapReduce(), args); //exit
System.exit(status);
} }

运行指令:

十九、Hadoop学记笔记————Hbase和MapReduce

十九、Hadoop学记笔记————Hbase和MapReduce

接下来是hdfs中文件导入Hbase:

构造数据:

十九、Hadoop学记笔记————Hbase和MapReduce

十九、Hadoop学记笔记————Hbase和MapReduce

然后编写MapReduce程序:

package com.jkxy.hbase.mr;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class HDFS2TabMapReduce extends Configured implements Tool{ public static class HDFS2TabMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, Put> { ImmutableBytesWritable rowkey = new ImmutableBytesWritable(); @Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException { String[] words = value.toString().split("\t");
//rk0001 zhangsan 33 Put put = new Put(Bytes.toBytes(words[0]));
put.add(Bytes.toBytes("info"),Bytes.toBytes("name"),Bytes.toBytes(words[1]));
put.add(Bytes.toBytes("info"),Bytes.toBytes("age"),Bytes.toBytes(words[2])); rowkey.set(Bytes.toBytes(words[0])); context.write(rowkey, put);
}
} @Override
public int run(String[] args) throws Exception { // create job
Job job = Job.getInstance(this.getConf(), this.getClass().getSimpleName()); // set class
job.setJarByClass(this.getClass()); // set path
FileInputFormat.addInputPath(job, new Path(args[0])); //set mapper
job.setMapperClass(HDFS2TabMapper.class);
job.setMapOutputKeyClass(ImmutableBytesWritable.class);
job.setMapOutputValueClass(Put.class); // set reduce
TableMapReduceUtil.initTableReducerJob(
"user", // set table
null,
job);
job.setNumReduceTasks(0); boolean b = job.waitForCompletion(true); if(!b) {
throw new IOException("error with job!!!");
} return 0;
} public static void main(String[] args) throws Exception {
//get configuration
Configuration conf = HBaseConfiguration.create(); //submit job
int status = ToolRunner.run(conf, new HDFS2TabMapReduce(), args); //exit
System.exit(status);
} }

运行指令十九、Hadoop学记笔记————Hbase和MapReduce

接下来演示使用BulkLaod将数据从Hdfs导入Hbase,使用该方式可以绕过WAL,memstor等步骤,加快海量数据的效率,代码如下:

package com.jkxy.hbase.mr;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat2;
import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles;
import org.apache.hadoop.hbase.mapreduce.PutSortReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class HFile2TabMapReduce extends Configured implements Tool { public static class HFile2TabMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, Put> { ImmutableBytesWritable rowkey = new ImmutableBytesWritable(); @Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException { String[] words = value.toString().split("\t"); Put put = new Put(Bytes.toBytes(words[0]));
put.add(Bytes.toBytes("info"), Bytes.toBytes("name"), Bytes.toBytes(words[1]));
put.add(Bytes.toBytes("info"), Bytes.toBytes("age"), Bytes.toBytes(words[2]));
rowkey.set(Bytes.toBytes(words[0])); context.write(rowkey, put);
}
} @Override
public int run(String[] args) throws Exception { //create job
Job job = Job.getInstance(getConf(), this.getClass().getSimpleName()); // set run jar class
job.setJarByClass(this.getClass()); // set input . output
FileInputFormat.addInputPath(job, new Path(args[1]));
FileOutputFormat.setOutputPath(job, new Path(args[2])); // set map
job.setMapperClass(HFile2TabMapper.class);
job.setMapOutputKeyClass(ImmutableBytesWritable.class);
job.setMapOutputValueClass(Put.class); // set reduce
job.setReducerClass(PutSortReducer.class); HTable table = new HTable(getConf(), args[0]);
// set hfile output
HFileOutputFormat2.configureIncrementalLoad(job, table ); // submit job
boolean b = job.waitForCompletion(true);
if(!b) {
throw new IOException(" error with job !!!");
}
LoadIncrementalHFiles loader = new LoadIncrementalHFiles(getConf());
// load hfile
loader.doBulkLoad(new Path(args[2]), table); return 0;
} public static void main(String[] args) throws Exception {
// get configuration
Configuration conf = HBaseConfiguration.create(); //run job
int status = ToolRunner.run(conf, new HFile2TabMapReduce(), args); // exit
System.exit(status); } }

使用如下指令:十九、Hadoop学记笔记————Hbase和MapReduce