题意:
给出一棵树,每个节点上有个权值。要找到一对字典序最小的点对\((u, v)(u < v)\),使得路径\(u \to v\)上所有节点权值的乘积模\(10^6 + 3\)的值为\(k\)。
分析:
比较经典的树分治。
对于分治过程中的一棵子树,我们统计两种情况:
- 一端为重心的路径中,到某个顶点乘积为\(k\)的路径。
- 两端在不同子树且过重心的路径中,乘积为\(k\)。
其他的递归到子树中去。
这里要预处理乘法逆元。
子树合并的时候,需要用到一个小技巧性的hash,参考九野的博客。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#define MP make_pair
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int MOD = 1000000 + 3;
const int maxn = 100000 + 10;
const int INF = 0x3f3f3f3f;
void read(int& x) {
x = 0;
char c = ' ';
while(c < '0' || c > '9') c = getchar();
while('0' <= c && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
}
LL pow_mod(LL a, LL n) {
LL ans = 1;
while(n) {
if(n & 1) ans = ans * a % MOD;
a = a * a % MOD;
n >>= 1;
}
return ans;
}
int mul_mod(int a, int b) { return (LL)a * b % MOD; }
int inverse(int x) { return pow_mod(x, MOD - 2); }
int n, k;
int a[maxn], inv[MOD];
struct Edge
{
int v, nxt;
Edge() {}
Edge(int v, int nxt): v(v), nxt(nxt) {}
};
int ecnt, head[maxn];
Edge edges[maxn * 2];
void AddEdge(int u, int v) {
edges[ecnt] = Edge(v, head[u]);
head[u] = ecnt++;
}
PII ans;
bool del[maxn];
int fa[maxn], sz[maxn];
void dfs(int u) {
sz[u] = 1;
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(del[v] || v == fa[u]) continue;
fa[v] = u;
dfs(v);
sz[u] += sz[v];
}
}
PII findCenter(int u, int t) {
PII ans(INF, u);
int m = 0;
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(del[v] || v == fa[u]) continue;
ans = min(ans, findCenter(v, t));
m = max(m, sz[v]);
}
m = max(m, t - sz[u]);
ans = min(ans, MP(m, u));
return ans;
}
int tot, path[maxn], num[maxn];
int has[MOD], id[MOD], cnt;
void getproduct(int u, int p, LL prod) {
path[++tot] = prod; num[tot] = u;
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(del[v] || v == p) continue;
getproduct(v, u, mul_mod(prod, a[v]));
}
}
PII getpair(int a, int b) {
if(a < b) return MP(a, b);
else return MP(b, a);
}
void solve(int u) {
fa[u] = 0;
dfs(u);
int s = findCenter(u, sz[u]).second;
del[s] = true;
for(int i = head[s]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(del[v]) continue;
solve(v);
}
cnt++;
for(int i = head[s]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(del[v]) continue;
tot = 0;
getproduct(v, s, a[v]);
int m = mul_mod(k, inv[a[s]]);
for(int i = 1; i <= tot; i++) {
if(path[i] == m) {
PII tmp = getpair(num[i], s);
if(!ans.first || tmp < ans) ans = tmp;
}
int m2 = mul_mod(k, mul_mod(inv[path[i]], inv[a[s]]));
if(has[m2] == cnt) {
PII tmp = getpair(num[i], id[m2]);
if(!ans.first || tmp < ans) ans = tmp;
}
}
for(int i = 1; i <= tot; i++) {
if(has[path[i]] != cnt || (has[path[i]] == cnt && id[path[i]] > num[i])) {
has[path[i]] = cnt;
id[path[i]] = num[i];
}
}
}
del[s] = false;
}
int main()
{
for(int i = 1; i < MOD; i++) inv[i] = inverse(i);
while(scanf("%d%d", &n, &k) == 2) {
for(int i = 1; i <= n; i++) read(a[i]);
ecnt = 0;
memset(head, -1, sizeof(head));
for(int i = 1; i < n; i++) {
int u, v; read(u); read(v);
AddEdge(u, v);
AddEdge(v, u);
}
ans = MP(0, 0);
memset(has, 0, sizeof(has));
cnt = 0;
solve(1);
if(!ans.first) puts("No solution");
else printf("%d %d\n", ans.first, ans.second);
}
return 0;
}