Tree
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 24258 | Accepted: 8062 |
Description
Give a tree with n vertices,each edge has a length(positive integer less than 1001).
Define dist(u,v)=The min distance between node u and v.
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k.
Write a program that will count how many pairs which are valid for a given tree.
Define dist(u,v)=The min distance between node u and v.
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k.
Write a program that will count how many pairs which are valid for a given tree.
Input
The input contains several test cases. The first line of each test case contains two integers n, k. (n<=10000) The following n-1 lines each contains three integers u,v,l, which means there is an edge between node u and v of length l.
The last test case is followed by two zeros.
The last test case is followed by two zeros.
Output
For each test case output the answer on a single line.
Sample Input
5 4
1 2 3
1 3 1
1 4 2
3 5 1
0 0
Sample Output
8
Source
题意:一棵有n个结点的树,求距离不超过k的点对
思路:树分治。n比较大,直接枚举所有点对肯定是不行的。按照重心把树分成若干子树,那么所有的点对一定属于 1)点u、v属于同一子树的点对; 2)点u、v属于不同子树的定点对; 3)重心s和其他点组成点对。1)情况可以通过递归得到。2)情况,只要先求出每个点到重心s的距离,就可以统计出和不超过k的点对数。而3)情况,添加一个0的顶点,就成为了情况2)。需要注意的是,需要避免重复统计,即应该在1)中统计的属于同一子树的点对,要避免在2)中进行统计。递归深度最多为log(n)层,每层总共有n个结点。
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<bitset>
#include<map>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
#define bug(x) cout<<"bug"<<x<<endl;
#define PI acos(-1.0)
#define eps 1e-8
typedef long long ll;
typedef pair<int,int> P;
const int N=1e5+,M=1e5+;
const int inf=0x3f3f3f3f;
const ll INF=1e18+,mod=1e9+;
struct edge
{
int from,to;
int w;
int next;
};
edge es[M];
int cut,head[N];
int si[N],maxx[N];
bool vis[N];
int deep[N];
int k;
int root,ans;
void init()
{
cut=;
memset(head,-,sizeof(head));
}
void addedge(int u,int v,int w)
{
cut++;
es[cut].from=u,es[cut].to=v;
es[cut].w=w;
es[cut].next=head[u];
head[u]=cut;
}
int getroot(int u,int fa,int n)
{
si[u]=,maxx[u]=;
for(int i=head[u]; i!=-; i=es[i].next)
{
int v=es[i].to;
if(v==fa||vis[v]) continue;
si[u]+=getroot(v,u,n);
maxx[u]=max(maxx[u],si[v]);
}
maxx[u]=max(maxx[u],n-si[u]);
if(maxx[u]<maxx[root]) root=u;
return si[u];
}
void getdeep(int u,int fa,int d)
{
deep[++deep[]]=d;
for(int i=head[u]; i!=-; i=es[i].next)
{
edge e=es[i];
if(e.to==fa||vis[e.to]) continue;
getdeep(e.to,u,d+e.w);
}
}
int cal(int u,int fa,int d)
{
deep[]=;
getdeep(u,fa,d);
sort(deep+,deep+deep[]+);
int l=,r=deep[];
int res=;
while(l<r)
{
if(deep[l]+deep[r]<=k) res+=r-l,l++;
else r--;
}
return res;
}
void solve(int u)
{
vis[u]=true;
ans+=cal(u,,);///统计符合情况的点对数
for(int i=head[u]; i!=-; i=es[i].next)
{
edge e=es[i];
if(vis[e.to]) continue;
ans-=cal(e.to,,e.w);///删除同一子树的点对数
root=;
getroot(e.to,,si[e.to]);
solve(root);///递归同一子树
}
}
int main()
{
int n;
while(scanf("%d%d",&n,&k)!=EOF)
{
if(n==&&k==) break;
init();
for(int i=; i<n; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
addedge(v,u,w);
}
memset(vis,false,sizeof(vis));
root=,maxx[]=inf;
ans=;
getroot(,,n);
solve(root);
printf("%d\n",ans);
}
return ;
}
树分治