[poj2155]Matrix(二维树状数组)

时间:2023-03-08 20:20:30
[poj2155]Matrix(二维树状数组)

Matrix

Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 25004   Accepted: 9261

Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
2. Q x y (1 <= x, y <= n) querys A[x, y]. 

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.

Output

For each querying output one line, which has an integer representing A[x, y].

There is a blank line between every two continuous test cases.

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1

Source

POJ Monthly,Lou Tiancheng
继续继续
二维树状数组果然比二维线段树简单多了
讲一下二维树状数组
其实我也不清楚多出来的一维怎么做
但既然多套了一重循环就算作是二维了
文字说不清,自己仿照一维画一个图就明白了
再说这道题
假设只有一维,我们可以用树状数组维护一个差分数组,区间首尾打标记+1,求和即可
那么推广到二维,把维护差分数组的方式看成打一个标记
四个点+1,对询问求一遍和模2
尹神的办法zrl说可以推广,而这种办法只对01有效
就是说对于正常的差分数组,区间修改应该是首加尾减
到了二维应该这样维护
-1 +1
+1 -1
就这样吧
 #include<stdio.h>
#include<stdlib.h>
#include<string.h>
int bit[][];
int n;
int lb(int x){
return x&(-x);
}
int q(int x,int y){
int ans=;
while(x){
int i=y;
while(i){
ans+=bit[x][i];
i-=lb(i);
}
x-=lb(x);
}
return ans%;
}
int c(int x,int y){
while(x<=n+){
int i=y;
while(i<=n+){
bit[x][i]++;
i+=lb(i);
}
x+=lb(x);
}
return ;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
int t;
scanf("%d %d",&n,&t);
memset(bit,,sizeof(bit));
for(int i=;i<=t;i++){
char op=getchar();
while(op!='C'&&op!='Q')op=getchar();
switch(op){
case 'C':
int x1,y1,x2,y2;
scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
c(x1,y1);
c(x2+,y1);
c(x1,y2+);
c(x2+,y2+);
break;
case 'Q':
int x,y;
scanf("%d %d",&x,&y);
printf("%d\n",q(x,y));
break;
default:
break;
}
}
puts("");
}
return ;
}