将n!标准分解。m!/n!必定需要包含n!的分解式。对于每个质数枚举最小的答案,然后总的取最大。
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<cmath>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
int read(){
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
const int nmax=1e6+5;
int pe[nmax<<3];bool vis[nmax+1];
int main(){
int cnt=0,tp;
rep(i,2,nmax) {
if(!vis[i]) pe[++cnt]=i;
rep(j,1,cnt){
tp=pe[j];if((ll)tp*i>nmax) break;vis[tp*i]=1;
if(i%tp==0) break;
}
}
int t=read(),u,v,d;
while(t--){
int n=read(),ans=n;
if(n==1){
printf("2\n");continue;
}
rep(i,1,cnt){
if(pe[i]>n) break;
tp=1;u=(int)(log(n)/log(pe[i]));
v=(int)pow(pe[i],u);
for(int j=2;;++j) if(v*j>n) {
v*=j;break;
}
ans=max(ans,v);
}
printf("%d\n",ans);
}
return 0;
}


一个整数序列S的LCM(最小公倍数)是指最小的正整数X使得它是序列S中所有元素的倍数,那么LCM(S)=X。
例如,LCM(2)=2,LCM(4,6)=12,LCM(1,2,3,4,5)=60。
现在给定一个整数N(1<=N<=1000000),需要找到一个整数M,满足M>N,同时LCM(1,2,3,4,...,N-1,N) 整除 LCM(N+1,N+2,....,M-1,M),即LCM(N+1,N+2,....,M-1,M)是LCM(1,2,3,4,...,N-1,N) 的倍数.求最小的M值。
Input
多组测试数据,第一行一个整数T,表示测试数据数量,1<=T<=5
每组测试数据有相同的结构构成:
每组数据一行一个整数N,1<=N<=1000000。
Output
每组数据一行输出,即M的最小值。
Input示例
3
1
2
3
Output示例
2
4
6