详解:http://blog.****.net/wall_f/article/details/8207595
算法时间复杂度:O(E * V * V)
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
using namespace std;
#define N 105
#define M 1010
#define INF 0x3f3f3f3f struct Edge {
int u, v, cap;
Edge () {}
Edge (int u, int v, int cap) : u (u), v (v), cap (cap) {}
}edge[N*N];
vector<int> G[N];
int S, T, cur[N], dis[N], tot; void Addedge(int u, int v, int cap) {
G[u].push_back(tot);
edge[tot++] = Edge(u, v, cap);
G[v].push_back(tot);
edge[tot++] = Edge(v, u, );
} int BFS() { // 找层次图
queue<int> que;
while(!que.empty()) que.pop();
memset(dis, INF, sizeof(dis));
que.push(S);
dis[S] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
for(int i = ; i < G[u].size(); i++) {
Edge &e = edge[G[u][i]];
if(dis[e.v] == INF && e.cap > ) {
dis[e.v] = dis[u] + ;
que.push(e.v);
}
}
}
return dis[T] != INF;
} int DFS(int u, int maxflow) { // 找增广路
if(u == T) return maxflow; //
for(int i = cur[u]; i < G[u].size(); i++) {
cur[u] = i; // 当前弧优化
Edge &e = edge[G[u][i]];
if(dis[e.v] == dis[u] + && e.cap > ) {
int flow = DFS(e.v, min(e.cap, maxflow)); // 找到增广路上最小的流量增量
if(flow) {
e.cap -= flow;
edge[G[u][i]^].cap += flow;
return flow;
}
}
}
return ; // 找不到增广路
} int Dinic() {
int ans = ;
while(BFS()) {
int flow;
memset(cur, , sizeof(cur));
while(flow = DFS(S, INF)) ans += flow;
}
return ans;
}