红黑树(Red-Black Tree)

时间:2025-04-04 21:14:37
void RedBlackTree::remove(int val) { RBTreeNode* z =删除操作的完整实现涉及到查找要删除的节点,替换该节点(如果需要),以及通过`fixDelete`函数调整树以恢复红黑树的性质。 ```cpp void RedBlackTree::remove(int val) { RBTreeNode* z = find(val); // 假设find函数已经实现,用于查找值为val的节点 if (z == nullptr) return; // 如果未找到节点,则直接返回 RBTreeNode* y = z; RBTreeNode* x; Color yOriginalColor = y->color; // 如果z有一个孩子,y指向它的孩子;否则,y指向z if (z->left == nullptr) x = z->right; else if (z->right == nullptr) x = z->left; else { y = minimum(z->right); // 找到z的右子树中的最小节点 yOriginalColor = y->color; x = y->right; if (y->parent != z) { // 如果y不是z的直接孩子,需要进行一些指针的调整 if (y->parent->left == y) y->parent->left = y->right; else y->parent->right = y->right; y->right = z->right; y->right->parent = y; } // y现在是z的右子树中的最小节点,它替代了z if (z == root) root = y; else if (z->parent->left == z) z->parent->left = y; else z->parent->right = y; y->parent = z->parent; // 将y的内容复制到z中(假设节点包含除了值以外的其他数据) // 这里我们简化处理,只复制值 z->val = y->val; } // 删除节点y(此时y指向z或z的替代者) delete y; // 如果y是黑色的,并且它不是根节点,我们需要进行调整 if (yOriginalColor == BLACK) fixDelete(x); } void RedBlackTree::fixDelete(RBTreeNode* &x) { while (x != root && (x == nullptr || x->color == BLACK)) { if (x == x->parent->left) { RBTreeNode* w = x->parent->right; if (w->color == RED) { w->color = BLACK; x->parent->color = RED; leftRotate(x->parent); w = x->parent->right; } if (w->left->color == BLACK && w->right->color == BLACK) { w->color = RED; x = x->parent; } else { if (w->right->color == BLACK) { w->left->color = BLACK; w->color = RED; rightRotate(w); w = x->parent->right; } w->color = x->parent->color; x->parent->color = BLACK; w->right->color = BLACK; leftRotate(x->parent); x = root; } } else { // 与上面类似,但是方向相反 } } if (x != nullptr) x->color = BLACK; } // 假设的find函数,用于查找值为val的节点 RBTreeNode* RedBlackTree::find(int val) { RBTreeNode* current = root; while (current != nullptr) { if (val < current->val) current = current->left; else if (val > current->val) current = current->right; else return current; } return nullptr; } // 其他函数如leftRotate, rightRotate, minimum, successor等可以根据需要实现