UVA1646-Edge Case(递推+斐波那契数列)

时间:2023-03-08 20:01:21
Problem UVA1646-Edge Case

Time Limit: 3000 mSec

UVA1646-Edge Case(递推+斐波那契数列) Problem Description

UVA1646-Edge Case(递推+斐波那契数列)

Input

For each test case, you get a single line containing one positive integer: n, with 3 ≤ n ≤ 10000.

UVA1646-Edge Case(递推+斐波那契数列) Output

For each test case, a row containing the number of matchings in Cn.

UVA1646-Edge Case(递推+斐波那契数列) Sample Input

3
4
100

UVA1646-Edge Case(递推+斐波那契数列) Sample Output

4
7
792070839848372253127

题解:这个题一看样例就知道涉及高精度,不过只有加法,即便用C++写也没有什么难度,大致看了一下网上的题解,都是只说找规律没有证明(可能是我没翻到),因此在这里简单做个说明。

UVA1646-Edge Case(递推+斐波那契数列)

首先设最终结果为a[n],递推过程中需要引入一个中间序列b[n],b[n]的含义是强制让1、2两条边不连的匹配数。由此我们得到第一个递推式:

a[n] = b[n] + 2*b[n-1]

解释一下,n的时候的所有成立的情况可以分为三类,

1、1号边和2号边都不连

2、1号边连,2号边不连

3、2号边连,1号边不连

第一种情况自然对应b[n],第二种情况,如果1连,则1的左右两条边都不能连,这时看我引入的点P以及它连出的线段,它们将多边形分成上下两部分,只看上半部分,第二种情况的情况数就等于上半部分多边形强制让点P连的线段不连的情况数,即b[n-1],第三种情况类似。

我们再找一个关系式就可以递推了。从第一种情况入手,第一种情况等价于只有n-1个点时3号边不连,那我们就求强制让3不连的匹配数,发现不太好求,那就求强制让3连的匹配数,如果3号边连,那么它左右两条边都不能连,因此类似刚才的分析,匹配数等于b[n-1-1]=b[n-2],这样一来得到如下关系式:

b[n] = a[n-1]-b[n-2]

有了这两个关系式,解出数列a即可,基本操作,不再赘述。

 #include <bits/stdc++.h>

 using namespace std;

 const int maxn =  + ;

 int Fib[maxn][];
int n; void prepare()
{
Fib[][] = ;
Fib[][] = ;
Fib[][] = ;
Fib[][] = ;
for (int i = ; i < maxn; i++)
{
for (int j = ; j <= max(Fib[i - ][], Fib[i - ][]); j++)
{
Fib[i][j] += Fib[i - ][j] + Fib[i - ][j];
Fib[i][j + ] = Fib[i][j] / ;
Fib[i][j] %= ;
}
Fib[i][] = max(Fib[i - ][], Fib[i - ][]);
if (Fib[i][Fib[i][] + ])
Fib[i][]++;
}
} int main()
{
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
prepare();
while (~scanf("%d", &n))
{
for (int i = Fib[n][]; i; i--)
printf("%d", Fib[n][i]);
printf("\n");
}
return ;
}