scrapy_redis 相关: 多线程更新 score/request.priority

时间:2023-03-08 19:45:09

0.背景

使用 scrapy_redis 爬虫, 忘记或错误设置 request.priority(Rule 也可以通过参数 process_request 设置 request.priority),导致提取 item 的 request 排在有序集 xxx:requests 的队尾,持续占用内存。

1.代码实现

遍历 SortedSet 的所有 item 并根据预定义字典对 data 中的 url 进行正则匹配,更新 score 并复制到临时 newkey,最后执行 rename

# -*- coding: UTF-8 -*
import sys
import re
from multiprocessing.dummy import Pool as ThreadPool
from functools import partial try:
input = raw_input #For py2
except NameError:
pass import redis def print_line(string):
print('\n{symbol}{space}{string}'.format(symbol='#'*10, space=' '*5, string=string)) def check_key_scores(key):
try:
total = redis_server.zcard(key)
except redis.exceptions.ResponseError:
print("The value of '{key}' is not a SortedSet".format(key=key))
sys.exit()
except Exception as err:
print(err)
sys.exit() if total == 0:
print("key '{key}' does not exist or has no items".format(key=key))
sys.exit() __, min_score = redis_server.zrange(key, 0, 0, withscores=True)[0]
__, max_score = redis_server.zrange(key, -1, -1, withscores=True)[0] print('score amount')
total_ = 0
# Asuming that score/request.priority is an integer, rather than float number like 1.1
for score in range(int(min_score), int(max_score)+1):
count = redis_server.zcount(key, score, score)
print(score, count)
total_ += count
print("{total_}/{total} items of key '{key}' have an integer priority".format(
total_=total_, total=total_, key=key)) def zadd_with_new_score(startstop, total_items):
data, ori_score = redis_server.zrange(key, startstop, startstop, withscores=True)[0]
for pattern, score in pattern_score:
# data eg: b'\\x80\\x02}q\\x00(X\\x03\\x00\\x00\\x00urlq\\x01X\\x13\\x00\\x00\\x00http://httpbin.org/q\\x02X\\x08\\x00\\x00\\x00callbackq\\x03X\\x
# See /site-packages/scrapy_redis/queue.py
# We don't use zadd method as the order of arguments change depending on
# whether the class is Redis or StrictRedis, and the option of using
# kwargs only accepts strings, not bytes.
m = pattern.search(data.decode('utf-8', 'replace'))
if m:
redis_server.execute_command('ZADD', newkey, score, data)
break
else:
redis_server.execute_command('ZADD', newkey, ori_score, data)
print('{startstop} / {total_items}'.format(
startstop=startstop+1, total_items=total_items)) if __name__ == '__main__': password = 'password'
host = '127.0.0.1'
port = ''
database_num = 0 key = 'test:requests'
newkey = 'temp'
# Request whose url matching any key of keyword_score would be updated with the corresponding value as its score
# Smaller value/score means higher request.priority
keyword_score = {'httpbin': -12, 'apps/details': 1}
pattern_score = [(re.compile(r'url.*?%s.*?callback'%k), v)for (k, v) in keyword_score.items()] threads_amount = 10 redis_server = redis.StrictRedis.from_url('redis://:{password}@{host}:{port}/{database_num}'.format(
password=password, host=host,
port=port, database_num=database_num)) print_line('Step 0: pre check')
check_key_scores(key) print_line('Step 1: copy items and update score')
# total_items = redis_server.zlexcount(key, '-', '+')
total_items = redis_server.zcard(key)
input("Press Enter to copy {total_items} items of '{key}' into '{newkey}' with new score".format(
total_items=total_items, key=key, newkey=newkey))
p = ThreadPool(threads_amount)
p.map(partial(zadd_with_new_score, total_items=total_items), range(total_items))
p.close() #Prevents any more tasks from being submitted to the pool. Once all the tasks have been completed the worker processes will exit.
p.join() #Wait for the worker processes to exit. One must call close() or terminate() before using join(). # For py3
# https://*.com/questions/5442910/python-multiprocessing-pool-map-for-multiple-arguments
# with ThreadPool(threads_amount) as pool:
# pool.map(partial(zadd_with_new_score, total_items=total_items), range(total_items))
# print('zadd_with_new_score done') print_line('Step 2: check copy result')
check_key_scores(key)
check_key_scores(newkey) print_line('Step 3: delete, rename and check key')
input("Press Enter to DELETE '{key}' and RENAME '{newkey}' to '{key}'".format(
key=key, newkey=newkey))
print(redis_server.delete(key))
print(redis_server.rename(newkey, key))
check_key_scores(key)
check_key_scores(newkey)

2.运行结果

scrapy_redis 相关: 多线程更新 score/request.priority