一道清真简单的好写的题
题意
求点集两两连出的直线中斜率第$ k$大的直线
$ Solution$
二分答案,设$x_j \geq x_i$
若点$ (x_i,y_i)$和点$(x_j,y_j)$构成的斜率大于二分的答案$ k$则有
$ \frac{y_j-y_i}{x_j-x_i} \geq k$
$y_j-k·x_j \geq y_i-k·x_i$
转化成二维偏序
树状数组/归并排序维护即可
注意特判各种边界问题
时间复杂度$ O(n \log^2 n)$
$ my \ code$
#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x = ; char zf = ; char ch = getchar();
while (ch != '-' && !isdigit(ch)) ch = getchar();
if (ch == '-') zf = -, ch = getchar();
while (isdigit(ch)) x = x * + ch - '', ch = getchar(); return x * zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
ll n,m;
struct node{
int x,y;
bool operator <(const node s)const{
if(x==s.x)return y>s.y;
return x<s.x;
}
}a[];
ll q[],zs[],ans;
ll calc(int L,int R){
if(L==R)return ;
if(ans>=m)return ans;
const int mid=L+R>>;
calc(L,mid);calc(mid+,R);if(ans>=m)return ans;
for(rt i=mid+,j=L;i<=R;i++){
while(j<=mid&&q[j]<=q[i])j++;
ans+=j-L;
}
int tot1=L,tot2=mid+,pl=L;
while(tot1<=mid||tot2<=R){
if(tot1>mid||(q[tot1]>q[tot2]&&tot2<=R))zs[pl++]=q[tot2++];
else zs[pl++]=q[tot1++];
}
for(rt i=L;i<=R;i++)q[i]=zs[i];
return ans;
}
bool check(int x){
ans=;
for(rt i=;i<=n;i++)q[i]=(ll)a[i].y-(ll)x*a[i].x;
return (calc(,n)>=m);
}
int main(){
n=read();m=read();
for(rt i=;i<=n;i++)a[i].x=read(),a[i].y=read();
sort(a+,a+n+);
int L=-,R=;
while(L<=R){
const int mid=L+R>>;
if(check(mid))L=mid+;
else R=mid-;
}
write(R);
return ;
}