基于visual Studio2013解决C语言竞赛题之0602最大值函数

时间:2022-08-28 19:35:44
基于visual Studio2013解决C语言竞赛题之0602最大值函数

题目

aaarticlea/png;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAAeAPwDAREAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+YPj58Wfj74Q8VfD34c/s5/s/wDh/wCMfjbxr4f+IPjbVPEvxZ+JvjT4F/ALwT4V+HGo/DzQr7Q/Efxf8C/Af9pHV7X4weNtX+KOh3/wq+G1x8NbPTvG3gvwN8bvFE3jnQrn4a2egeLwDv8A9nr41+Ff2lPgF8D/ANozwLp/iDSfBPx++D/w0+Nfg7S/Flrp1j4q03wr8VPBei+OvD2n+JrHR9V17SLPxBZ6Rrtnb6za6Xrms6db6jHcw2Oq6jbJFeTAHsFAHP8AizWdR8OeFfE3iHR/CfiDx7q+g+H9Z1nS/AvhO58K2firxpqOl6dc31j4T8M3njrxN4L8E2viDxHcwRaPo1z4x8Y+E/CsGo3ltL4h8TaFpC3mqWoB/MFp37bv7dNj+zV8PvBnj7RvEHwlufjX+0/4o/ZD+Oni7xZ8KP2kf23vjL4Z/aV8W/BD9vv9rj9uSy/ZQ0v/AIJt/tUH4ieMP2YPgr8RNG+Df7JP7ImvfB746/8AC7/2S4PhR+0L4E+OcWh+Nv2eItT0cA+n/gV8VP24vjZo/wASPCHxg/br+IHwI+CX7K3w/wD2fPiv46/byn/4Jb+Lf+CeHjv4xaPJ4E/bB8PftBeBvF2gf8FK9E+L3wS0L/hCNT8B/s3/ALRXxF+Nvwu+DOg+BPDuj634i+HOn+FfBemeI7fWvCYB5/8ACfxd/wAFLPiB8LPhp498ReHf+C/3hDxB42+H/g3xdrvhPyP+DZ+2/wCEX1jxJ4c03WdT8O/Zvil8Ovg/8Tbf+xL29n03yPiL8JPhd47i+zeX4u+HXgnxAuoeGdMAP0/s/wBqL9nv9iDw54c+CX7dP/BS39n/AFH42n/hNfGun+Lv2l/iN+zP+zR8U/Gfws8VfFPx/P8AC291b4daFe/DXwlf/wDCHeErWx+FF/4/8GeBvCvhz4g+I/h5r3iqLw54b1PUdT8O6SAH/D2L/gll/wBJLP2AP/EyP2df/njUAfnB+1x8cdE8VfDP4o/tw/E3wn8YF+G3wz8P/wDBRz4KeFfhZ8FP+Cmv7XH7G3iq/wDi3/wTQ+IX7dGrHUNQ0X4RfH74SfDv4seH/wBpj4d/syeKNSurrwF8G/FH7Q/7OOo6PpQ17Sv2lfgTN4q+IP7KwB0Hw/8AiH8U/wBiz9nu58D3nxp/4THRfjt+0B+1t8BvBn7Rvxv/AGyfEfjHxH8Ivin8Cf2Z/wBuT4yfF/4/eLfjX8efEH7fnw/+A37P/hH4gfskW/wc+DX7MnifSvjt4j/Zd+Fng5/jT+2L4x+O37TXjH47/ALwmAfEH7KX/BUL/goX4c+PPx78U/tx/DHw/wDB/wCDfhH4warqureEPDfxJ8fX/wAQv2nPjnF/wTb/AGTbj4Tfsa/sKfBD46fBUav4P8QfGrV9Z0n9q34f/sN/Fnx7+yv+2F4++Jn7TuleHPD+peJPEn7Jv7dfwz+JIB9v/smftv8A7X/gb9ijxLH458IfsgfGS9/Ya/4ZI/Z3+Iv7Ver/APBQD9oDxn8LP2g9H8SfsifAf40+Lv2ytb+Lvh3/AIJ7/E7xBoPw/v8Aw/8AHv4JePfFPxB8Vab4k8CaT4c1/wCOnxb+K/xh8D/DL4NweP8A4lgHP/En46f8FXrX9pX9tix0vQP2IPgNc/DP9iD9iT4wS6x8Rf8AgoV8YNY/Zq+CGnaV8b/+CgXiHWPij4ii8Y/8E4rDSNW8P/FbSPhhfeBf2qdPs9L+BvirTvgh8OvCN54F/aQ0DxtfeHvGPwJAP0/tfCX7Q/7Uvwa+CnxB1T47fGD9hLxtqnh/VfE3ifwL+zNH8JPiHp2r6d4un0++8FW3jG8/b9/4J8WfxW0LxBoPhazsb7UfCd58DfgV4q8G+KvFXjDwV460bxPc+GdE1S0ADwn+yh8efDnirwz4h1j/AIKbftv+PdI0HxBo2s6p4F8WeAf+Cbdn4V8aadpeo219feE/E154F/4J8+C/G1r4f8R20Euj6zc+DvGPhPxVBp15cy+HvE2hautnqlqAeP8A7WP7VXgT4h/Cz9pb4e/CT40f8Iv8Mvg/8P8A4yQft1/tl/CfX9Y1v/hinwJ8P/DniMfGLwj8NNb+GB1fxBq/7f8ApHh/SPEE/g34deGodT1j9lr7Ppvx++Ovh29vZf2d/wBnX9rkA9g8NfH7UdQ1G5/ZH/aI+IXh/wDZ6/a+8Y+H/Fmg/CvxX4Fm8K6Hp37Q2nWXhXWdRm/aC/Yy8O/GO3+JekeIfEHgbSNPuvF3xX/Z28aaZ8X/ABV+y/4q02HTPirZ/F74A+KPgn+0H+0UAfyBfse/8FEv2/f2rtb/AOCjvw3X44ftv28nhz4P/HLxN8YdX8T/ABk/Z08A6J/wT71GH9kf4L/DPV7b49+Kfiz/AME2/wDgnlbfCr4wfDLxtD+0N4g+DHhP9nn9pT9mvwr4j/a4/Zj8R6d8XtG+G37PmpfGf/gpL40AP3e1D9rT/gprF+zjpn7QfhXxN+yB8cfFviH9r/Qvhv8As0fs/wDh34efE/8AZJ8d/tMeBPBNr8UvBXxs+EPxF8F+KvGP7ePi3wL+0B4r8W+F/GOp+Efhhd+If2dtY/Yn0f4OT/tDf8FDviB8O/CXwx/a1/Y58CAHwB+x3+3j+3F8Vv2Nv2Yvhx8WfiF8P/AX7T/xL/4dIXX7OHgHxn+1R4t8PeMfFPwT+HF98MvjJ8QP2k/2x/ihJ8BNS+JulfD/AP4KZXvhnTf2ZtK+OXw08T/tZ/CLxT8dv2qPgP8AsB+Mvhl4C/af8K/tOXvxWAP0f1z9sP8AbQ/a++Gf/BMCy+AnwY+D/wANvG37Y/wfk/4KO/EPQNT/AGyvit8P4PDfwC/Z0+IX7JvxA8D/AAS8PfG3wZ+yB4y1fU/EHxt1f9o34Jad+0HpmufA+TwXc/BrTP2hvgHpF3rVz4/8JfGzw2AeP6l+2X+3F49/ZY+OP/BVr4O/EH9n/wDZ8srb/gmB8KP2qrX/AIJ6ftAaJ4t/a28R2fgTwN8Ov2jvjv4P+NEWs/B39qX9nPw/8B/+GqfEGrfEL4XaLr918OviXrHjn4Wfs7fCnxt4wPgn4m6T8Qf2ZfgqAfIH/BVv9rvR5f2+vFNt8Pf25vh/Z/DLwb+z/wDC74W6v4C8Af8ABRrwJ8MP+Ff/ALR3gL40ftQx/HTQvGvwk8Lf8HAX/BHfxB4T+IFr4f1n4O6N4j1Pxh4T+NV1qf8AYNn4ZtdQ+Hd74G1vTfFAB7B/wRt/a9gT4y/ta6H4l/ae8P8Ax91fxl8H/gfc/sxfsz2v7fXwa+Onxl+KnxM+FkH7W3jj46aN8FPhv8Rf+C2n/BU+50HxBrXgm4+EEOq+Jtf/AGjPgn8PdZg0XT7jXfCfhfSPh74q+I+rAH1/+1Z/wUI+PPhL43/sAaXc/sKftv8AwmjvP2n/ABLrPi/wVqvxw/4Jt6DP8Zfh7qH7NXx2+BmieE7qx8Of8FGNR0O+8Px/tR/H79lez0+5+K994U+Gdx8Zde+CngXRvE15+0H8QfgB8PvH4B7/APtUf8FDvjf8C/2L/wBq/wDaFX9gr9p/4X/En4OfB/x/4s+Evhf4w2n7NXxH8K+MvFXhn4U/E/4lXfibxlf/ALMH7XHxS0jwL8H/AIV6R8N7rxN8WNZ+J/j74Paj4o0680T4afAm5+JXx28b+BvhzrQB+IP7VP8AwUT/AGqv2S/2kfh1+yF4V/bP+D+t6R+wH8YPCPhnxv4n/aFl/ZR+GPxb+LXw91n9hbxE/wAP7n44aj+0l/wXt/ZT8bftteILi2/aA+EXiP4l+LB8DP2Z/hn4t/aH8Ma18Z/Cus2+r/BuH4M+LQD+n79in4s+Kvj9+yP+zl8e/GPiPw/4r1f47fB/wP8AGuz1rwz8KtR+COnSeFfizolr8QfAun3Pws1T43ftH3PhHxBongnxF4e0PxZaxfG74g6dfeKtO1nV9H1W10jULHSdOAPp+gDgPH3xL8K/Dvwr8RfFOr3f9of8Kv8Ah/qfxL8U+HNFn0678VQ+FdP07xHqNvdw6RdX9j5f9uf8Il4jsdAn1G40/TtT1HR9StUv0/s++e2AO/oA+AP25/hf+1P8YP8AhV3gr4O+A/2f/i3+z/d/8JtdftNfBr41fHv4i/s7/wDC4Ps//CIp8L/h7rPi3wH+zL+1B/wmH7P+q+d8Qb34+/B268OeB/8AhcH9m/DjwB4w8YeJv2f9b+PfwR+MAB6B8J/+G+v+Fp/DT/hen/DIH/Ckv+GQPBv/AAuL/hU//C6P+Fp/8N9f8JHpv/Cwf+Faf8Jh/wAUl/wyB/wiX9r/APCG/wDCU/8AF6P+Ej/s3+2/+JZ9qoA+v6APP/izZ/2j8LPiXp//AAjnxA8Y/b/h/wCMrP8A4RH4T+Nf+Fa/FPxV9q8OalB/wjnw0+Iv/Cf/AAo/4QH4ga5v/szwb41/4Wl8Nf8AhFfEd1puu/8ACf8Ag77B/wAJFpwB/JF+3z/wS1+Pvxe/Zb+FfwU/Zo/ZQ+MHwn+Hf/CQfFLwT8G/2Wf2oP2p/Gn/AAUB07Q4PDX/AATH/wCCgXgf4aa58SPhz8Rvin8UfgT+wd4g+HfxJXwL8Mf2OfiT+z/+3V4l+DWm+Kvjn8KviT+0P4Gu/iJ8J/hN8H/BwB7B/wAE1P8Agnt+1P8ABj4k/wDBTT4FWHgH9kD4I2XxA/4QTw54svPF3/BMb4iy/sgfG34WeL/2sf8AgrR41ufAHh3wBo37WPgHwL8ZP7S+Avxv/Zy1GC88N/Gvx94c+AH7P/ij4dfsSfFXwVqfxN+EnibxHCAfT/ib/glX8M/gnp1t8UfjN+zj/wAEYfHPwp8J+IPCdz8QfB3wB/4N2PiF49+MviXwrqHirRtH1bRvh74e+Fn7Xvx+8bR+IL621F4IfE2nfBf4l6d4Hga48beJ/CeqeFvD2tRAA/V//gnt8LfHfwO/YF/Ye+CnxS0L/hF/ib8H/wBkD9mn4W/EXwz/AGno+t/8I747+H/wX8FeE/F2hf2z4d1DV/D+r/2R4g0jUNP/ALT0LVdT0e/+z/atM1C9spYLmUA+v6AP5gvjB+zb+13qf7P/AO1l+zx4N/YX/aAsvib8dPiB/wAFN/g7qX7Tq2n7FH7QXgSX9jb9tn9r/wDa2+Nklr+z38PfHv8AwVx/ZF8QfB34gfEDw/8AGf4T+KfHfjDW/Bem33ijWPhV4D8KfGH4e/Eey+FXwku/h+Ae/wDx7HiP4lftFfs0/EDxJ/wTg/b/AP2bfCWo/tAfEz4mftQ/FfSPE3ws8Vfb/Dngv/gll/wUK+CWk+KNE8K/8E8P2w/2hPjb4Y/aA1nTPiL4K+GHhb4z+APhv4Z+KfjH/hFfgX8IbL4oaj4t8D/s1eBrUA8f/wCCZfwY+Of7HPxCn+Inxb8Mftv2fwBvvD/7cl1oHiLVPEf7YXxy079pjxB8Y/iZ4H/bb0L41+Kf+Cf3iX49/tY/Fb9hbxB4V8LWPxu+FHwI0rxjH8Sv2oP2nPFWq+P7f9sPUPgL+198R/hB8Fv2kQD6A/Yt/Ze+MvwQ/ZR+Ln7JXhX9n7w+3jH4g+IPhz4e+IOiftvzweK/ghY/sj3P7KvgL9jf4F66bb4I+EfiF8Lv2p/jB4E/Zu/Zg+EXgj9tD9kkfFz4OaJ47/aV0/8AaB1rwr8Y/hN+yd8XP2TvH/xCAPP/AIY/sJ/DP4p/t0/th+OvA/hr4waN8Vvhd8H/ANhW28O/tqftOfsyfEK11H4y/thfBv8AaR/bk8ffFHWfGn/C0vh78FvBH7W3wfubnSP2XNU1zwz8D7zRPgZ4H8K+Cf2Yb79i/wAWfs3eKf2Z/wBjvx9+z+Afb/7QnxI/Z/8AFvgTwH8JP+CmH7GH/C2/Fsu34pXPwr+Fv7EX7X//AAVI/Zx8Jaxb6x478GeE9d0L4veGf2D/APhEv+Fgf8Il/aUmp6ZrfgLwP478JWvizUNNXT9Q8Ja3o3ivxaAeAfC3xH/wR7+B3jvQvil8FP8Agmx8QPg/8TfC/wDaf/CM/EX4W/8ABAf9ub4f+O/Dv9t6PqHh3Wf7C8XeE/2AtI8QaR/a/h/V9V0LU/7P1C3+36PqeoaZdebZXtzBKAfb/wDwU28J+KvHv/BNv/goN4F8C+GfEHjTxt40/Yg/av8ACfg7wd4T0bUfEfirxZ4q8R/Abx9o/h7wz4Z8PaPbXmr694g13V7yz0vRtG0uzutR1TUbq2sbG2nuZ4omAPp/4s/8I5/wqz4l/wDCYf8ACwP+ES/4V/4y/wCEp/4VP/wtP/haf/COf8I5qX9t/wDCtP8AhRf/ABe3/hYH9mfav+EN/wCFO/8AF0/+Ej/s3/hX3/FW/wBkUAfxh+O/DPjv4ZeLWl/ZI0r/AIKf6x5P7X/gPSrm6+Nv/BKHR/BvgS9/Zx8CfsO/s96r4T+NPwo1Dwz/AMG4/wAXNa/ZX/4V5+01+yD+xx8CfCvwc+H/AMD/AB3a3usfsr+BvjLF4H8Kf2xo3xr+GQB9v+LvhBon7Uf/AAT0/ap8C+NYf237P9t79qzxB4d8DfEv4taN+wr+1x4M+IXjzW9e8A/EX4R/Bv4beLPHnwm/Yp/4ISeG/wBqD4P6P8G9K8a6Xba5+2rZ6D+yP+z58TPib4asf2o/G2p/CGz+HOm+JAD3/wAFfCr9pVv2R/jP8EvG/wAJv2n/AAz+1H8RP2n/ANk79pn9mT4LfFz43fG/9uP4NfAD4heCNE+AHxv+Dfg7x7+338SvEfjOTxr+zB4A/aD/AGPviB8QP20tOm1/4X/EzwTP4k+I3wT/AGbfB/jzXPjD+wt8Vf2swDn/AB7+zb8Np9Y/4JSeCdQ/4Jf/ALQH7dX7P/7NH7AH7XX7N6fBv46/Bz9k7xJ47+DXjv4c+O/+CdXwv8F6x8W739qD4i/Br9mWf4gT6L8Gvijofh/xv8H/ABz4h0f4y6OfEvxJ/Zvk+If7P+oX3j6AA6DxJ+z1Of8Aghr+zl4F1r4HfGC9/bQ8Vf8ABGG//wCCcnwg8Hab8NPjLqnirwf8TP2p/wBkH4VaP4l+GXxb8PaBot14W+CPh/Ufit8Cfhfpfj34zftE2fgX4e/BXUfDEdj4y+JXw807xBrsWsgHxB+2F+yn/wAFNfEf7cXx1+PPwj/Zs+ICfCXxB/wU/wD+Cenxp8P+GPiL8dPif4f+G3xT8CfAzxb+wD8GB44g8Ofsp/t3/G34f6Z/afxA+CQ+J3iLVf2h/wDglP4z1j4WfsneH/F3xs8UfGPw/wDFr4e/DL4CeHAD7/8A2HfCPif9lz4px+PfjF4i/wCCn/ijwLqv7P8A8StK+Bd18U5/+Cgn7Vv/AAvfwJ4d8R6p8R9X+NP7UPwl1v4i/tM2X7Mf7X9r8MvhX8PtN+GPwctfhJ+yzrHxG/4W14sj8H+B7349fHDxT/wTy/4JzgH0/wCOf2X/ABV+3rP8Sfjx4xfxB8CLmX4P6H8P/wDgn1/wnPgvUW+Jn7Pvirw98ZfBP7S1h+2P8SfhPfX3gaSXxB8Rf2g/gP8AsefEnQ/2SPjcNa1HwZ8Pf2UPBOk/FuL4Y+Nv2kP2nv2afh+AH7YXxB+IX7R//BNv/gpf8GW+Afxg8J/tLaL+xB+0p4C8Q/CbTvh58TPGXhXxd8QvHvwG+KukeDtN/Zm+M8Xw98P+CP2p/D/jq5srXUfB8nwwRviZomneKPB3hj47fCT4F/GnVNY+D3h0A/IH42eDPHnif9uX/goh44s/if8Atv8AwD8LeL/2n/By+DdO8J/8E/v+DjLxt4V+IenfDz9jn9lH4M+JviP4Z8T/APBO39rv9kf4E674fuviT8M/HXgzRvEF98PPFPirxVp3gm28W6X8TvF/wp174YJpYB+j/wCzz8Hf2hPin/wR3/4JxfDf4cWvxA+Gnjr4Wfs//sz+D/jl8Bvil4w/aY/4J9+O/iL/AMKg+Bs3wg8b/B3Xfjv4E+HrftT/ALMn/CI/GfTvD/xe0z4hfDH4f6v/AMLo0f4Raf8ADBbq++Avx81/xoAD9fvhP4d8d+EPhZ8NPCfxS+Iv/C4Pib4X+H/g3w78Rfi3/wAIjo/w/wD+Fo+O9E8Oabpvi74i/wDCBeHZ7nw/4J/4TbxBbah4m/4RHQrm40fw3/af9jaZPLZWUEjAHgOn/sYfDOD4yfGT4tatrfxA8Q23xo/4Qu78R+BdS+IfxCh8Ky6j4Zg8Q6fq9hr+m6d4us9J+IXw/wDEWkanpWmQ/DT4h6N4m8K+GtOsta8PaLBH4J8Qp4R0YA+vqACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//Z" alt="" />

解决代码及点评


#include <stdio.h>
#include <stdlib.h>
/*
编写一函数求三个整数的最大值。
*/
void f62(int a ,int b,int c)
{
int temp=a; // 取三个数的最大数,先取a
if (temp<b)
{
temp=b; // 如果a比b小,换b
}
if (temp<c)
{
temp=c; // 如果a,b中大的那个比c小,换c
}
printf("最大数是%d\n",temp);
} void main()
{
int a,b,c;
printf("输入三个整数a,b,c:");
scanf_s("%d%d%d",&a,&b,&c);
f62(a,b,c);
system("pause");
}

代码编译以及运行

由于资源上传太多,资源频道经常被锁定无法上传资源,同学们可以打开VS2013自己创建工程,步骤如下:

1)新建工程

基于visual Studio2013解决C语言竞赛题之0602最大值函数

2)选择工程

基于visual Studio2013解决C语言竞赛题之0602最大值函数

3)创建完工程如下图:

基于visual Studio2013解决C语言竞赛题之0602最大值函数

4)增加文件,右键点击项目

基于visual Studio2013解决C语言竞赛题之0602最大值函数

5)在弹出菜单里做以下选择

基于visual Studio2013解决C语言竞赛题之0602最大值函数

6)添加文件

基于visual Studio2013解决C语言竞赛题之0602最大值函数

7)拷贝代码与运行

基于visual Studio2013解决C语言竞赛题之0602最大值函数

程序运行结果

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqUAAAG6CAYAAAAxsD/hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACesSURBVHhe7d0JnCVVfS/wf88mi6yG2SAxJq5hG7aRRUDZBhVc4oK4ocZnYkxiAAOKMfF9iCgGEaIvZHEZcc/L05eooLINKhiUTTaNPl7CMwzDDMMuyzAz/erUvdVTXVP39u3u6T4DfL+TP7fq1DmnTtWdT/pn3e6eoS/907eGf/7vP43KNT+6vLsFAABT48yzP9Xd6hi65Rd3Dl9/3dXx5c//XQwNDcWLDjs8Dn7hkpg7d163CwAAbBqPPvJg3HzjtfGZT386hoeHR8JpGUpPPentscMOO8a73n1KPBRzygMAADBVFmw7J844/S/innvuLoNpGUrfe/J/i/f/5YfjoaGndLsBAMDUWrDN7Djl5D+Oj3zsH2Po2GOPHT7ggIPjwKN/t3sYAACmx4qfXxdf/OL5nVD6l6f/dfxqeHb3EAAATI/n/vrcePtbX98JpZ/67JfiZ/+1qnsIAACmx3N32akMpTO6+zGklFJKKaXUNFdl5Enpz2+/q9sEAADT49k7/9roj+9/sXx19xAAAEyPZy182uhQ+n/uuLt7CADgieFXD/wqfv7v/xH33PNAt2Xq7bDDNvHs5zwjtt5m63LfGjpr6OWZC3YcXyi9+F++3N0an996zu7xm8/+nZgxY+TbVwEApsWV3782Fu3x2zF33tO6LVNv5Z2r4/obbo0DD9673LeGzhp62SiU3rrinu6hdkO/urO71W7G0FAMzRiK4eEo/8moVMl3L7okXrDkFbHllluV+wAA0+WS714Zx7z0BXH3/Q91W6bejttuFd/81g/i8KMOLPetobOGXn57/g6Nn75PobJP7bloUd/afc89Y7fd94jd99gj9ii2q/ZSEVDb5tzs6q5L4n+cdlZ8766WY1Nd9XNvLutoOz6ltSq+94mT4p9vaTumlFJKTazKB2fTWG3n21zXUP0I/Ib97rG2P+Wx1L3+2h1T/enupxr0misjT0r/Y+V93aZ2+z57fiy7/Ob4+8t/HjNmrY8Zs4djxpx1MbOoM191ROy44w7dnh2Hn/TVuOTs4+IjZ50bBy95RWy19VO7Ryor4/Jzz4jv3tHdLe0Tb/jIm+J3unsb3Bj/870XxtyTT4lDd+o2lTaeY9Gbz4nXbDzBYFZdFJ/42HWxx0bn2ZR6XEv93DEd6+ih7R7c8vl4//nXdHfSe7Qobh7w/ej9nrbpjF955CTew1a9/v4k6din4/pye2Ec1eyz0bVX19JnXHkPvxUruruT+jsJwKRc/J0r4thjD5n2J4Tf+Mb34oglB5X7g67hymXL4tp/u6q719ve+z8/DnzhC7t77Xqu4b5fFXvp0+wNYbBjuPgzFD+8PK3hR922dK7FceAhL4wrL788rr1qw9rKNRx6aPkJeSdXdj4hHx5OQbOzu+P2W49aQy/PmLvd6I/v/3PV/d1D7fZ91ry4rAil//qzX8bMFEhnrytqfbG9Lt598EF9Q+khR7+yPZSe86G488hz47W7dptuPj9OKwLAojfX2rpWXXZmfCXeGn/8orndliTN8dmIN5zaCQQpDJx1bezxnu7+tGu5phbt17KZSu/JRQvixD89Muq3tPf7Mfh7urHB7t9E9FvvDXu+v9NerjXijWe+uRM8e1x7/3E3xj+dsyJeVI0p/07eEYdXcwIwrVIYe9kxB8c9Dz7SbZl6Ozx1i/jXb35/VCAcZA3nnvHh+OqX/ra719txr//DePdp7+vuteu1htWjgnE3PZZbQ2Us/cRHzox//urfl23Jq4/7/dinCKDXFGG52f7H7z21u9fuaUUwrq+hl9/cadvRH9+nR6z96lePrCn77bD97Pi/d6+In676f/Gzu26Lf1/9n2V7ki6r+l7SnXbf8C9Etc03o7gPxUv52HakbbcT4iPvOSbuPP/z8dN6e1Hzdts74oafxOpR7d05ij/l/tyj4oi9l8cNN6+s9ZnOarmmlmq/ls2xVsb3Lr4jjn7DUTGvcazv+1Fv6/OeblyD3b+JVOt6V/0kbrhj3zjisHmd/d2OjqMXXhM335KO9772/uP2iNedWBszd8/Yc+Edcdeq7r5SSqlprVLxmramrbrnHbWGQlpFvz/jUR/X/qejvob0sz9DM2aU6+u8prWm107bjOJ1nwP2LwPn+vXry/qnL59XBtL0WrWVQbXoV85XjEnj0g+0d6pzvnLO9IW9UK2hV1U2fE9pudA+1e131W2/iLWzH4rZW66N2Vs8FrOKStIj39SneiPmP/2X5WvSOl915qL/qPb56Yv41XFT+r7Cuy6Kc085M5al729M7fHNuDS1j5qjOF99fLdpaMadseycP4mv3nJjfPWUP4n3nnNR3FX26e6P1PlxSzW2PF9tv9H33GV3dtvbjl1U7H8ovr084rrPFW3d89217MyRPiPnaruW+rlHrSOdp7gHy86vnavXOrr9Rq61x/lTleeo2tN9qrdX67ghfhL7RFy6od/IuXu+H+n+19uKqr+nZVuv+1qNH328dW1t+/3uRes9XxF37L1X7DYyfn7MnR+xYlWxnn7X3m/cSFtVK+PO5QuL4832VO33ofOebbiuW75SHP/KjX3HKKWUaq/yy0r52CxtT08Np5e0VV9D2k5fH/tUXXoa2qy6tvH1Kv7T6VdbQzKzaC/DY/d1ZnEsVRlSi9eDDzss9j3wgHjt8e+MdevWlfXlL3xyZDu1p+Op34yhmWUITeOqgNkJo51wWqnW0KsqG0JpOVHvKv5T9hsJo095rHhdE7Of0nmCWpuzdM5hZ3a3es1dLLpzsG97ZzNtL4jDluwX191wQ3d/Q9+R/VUXxUXX7hyLdl8wcuy6pdfHHh/7ZHz05CUxd+iG+Mp7/jFWvOQD8dHUluqtQ3H+e4oA0J2jmK07X+p7Qcw/tdvvYx+IRdd/KL5yc3Vs9DwnHr4kji/6vHhhxF5vLdrS+Yr1fPGChXFCda6PvSV2K+duu5b6uevbxWbcHt9esVdnjlNfFnHB0li2Kh3rrCPS+cr53xZD11+9YWzP86+MZRcPxRur9rcWa1nacg9WFeFr+Tfizj27/Uadu/f7UWzU2prt/e5r4z3rt7aN9se4Fy3rvWtl55tfq/2yypZiHX2uve+4eltRt3wp/T15cfe+16v3fZh7+PvihL2vjosuXRlDN58f5694WfzZG/bsO2b03Eoppaoq/lMEnyI8zexfVyxbFuecccaYlfq1jR9Vxdez8rz1NaSvcWXw613J6tWry0pO+sAHRiqpH2sb36zWNRSv1VPNMhRWfYruVVg95LDDY78ieB7/xj+Ke+65Z6TSfmo/+PAikHYD5Ya5NtRIW+M+9KpK5w4U2jrVq5KejM6uAumcNTFnzqNl+/D69eVrq5b5qjnb23eO+enJ0rwlcdLZp8Vh87rHdt8r9r72+rh5VN/b48Iz/yhOObmoM6+JRe/b0D/Z+21VECvq5uvjuoUvizcdMX9k/NDuLy6C5I/jxvSFvbobVd/63CefHhcuj1ixMgWFlnm61Rne3Z83PxbEj+NzJ384Lmv+NHvzWurnrm+nKu7Hi5cs6mzPWxSLiuCb/ldAtY4jd+/2G5ofhx29X3do6tvr/EW/Ny6JoUs/3Lm2z/64HFMcaJy7eK3PX7wfR+1ze1x/U3EP0n7r+9E9d6NG3tN+97Xs13jPer0/qZrvV797kaqx3rnzixtZHetWmS7L7eK1x7X3H7ehbv7SH8Xnht4RJ7X8PRnrPuz2xnfEggtOL96b5fHiE9L/oBp7jFJKqY0r6b709eMrryy/Z3KsSv3G1D1ffQ2pLW31q+TRRx8tKzn79NNHKqkfaxtfr8qoNRQ6oTG1pQA6s9wv29JTz9R35oz4wWWXFtf5w/j4WX8+cs5UaT+1X3HpZcUcRf8USosx5bgqpJbbKZDWzpna+lSl+rLe2qlelTKMloH00fIp6aw5nY/vb7jp5rjhxpvKSt9W+kix+Icffrg81jZfp8qDo9tuvjAuHNo3dp/baC9rUey5z487T5BG2naOl7zvb+Osj6d6fxw+alxz/s7+6LZURWBKQbb8k/Jeais2dn55nFLOu6FOLgNGr3m640a2F8Xry3Fvj6Hz3xV/dtIZcVn5lLFzbNS11M9d3y4qKdu6+6mps58OpJ3Rxza09Tj/qu/Gx096V3xh6O2d63rfy6OTc4tj5Z/u9ryFsXBkrk6lvzAbztX2fnTOv2G/qFHvaXG8533tHq/GjVS3rb62jfY7fcp+I9Vsa663OL7izlg1cnxlrFoRsWB+sZa+195nXLftli++Kz4Xvx9nvbH7PyY2qmKOvvchdego9gYeo5RSqlHF/+ssf9olbfSrwq233jpmldrG12pks7aGVMVO/yqsWbOmrDPPOGWjqo6V2saPqvL/is3OGirpCWaRGjuBsqzuU81uqPz+xZfGj664ctT5TnzPX41sp/Z0/HuXXFJ8/e0E2k6o7Va53Zm3MnIfelRl4FCaTrB8+a3xjt84Jt624BVxwk6viTdsf3y87qlv6s6wQef7DtI3w3Z+6KltvrLSsfSn2r9pabzn08vjpSccXf6gyNCq78TZJ36oFuSGYrclL4+47voNgWA88+++d+xz+7/EFy6phaibLowLoghM5dPVcrVpwpG+l9zU7VfUzV9Y2nnKttGxn8Rl1Zz1cxbrv6zsMz8O/7MPxkt3vj3uXNk9VtToa6mdu7GddqsxZVX7G61jZVz27c5Tz3K/1/lX3hHLi3BTPelddePVsbzt3PP2ir2idr+K+b5zzc6x1x4bQlDr+5H+VPvN97TffU1VjL/2+p+MHFt1yafigtsXx57lE8u0tuWxsvv3YdS6x7oX3Rq13t1fGi8trm9kTPl34eWdp6P9rr3fuHTes/4wvrPgg/GxNzUCaf3v8xj34eYv/H2sOOaDceoxERec/53uese4d0oppTaqZGYRlmYWIalfJY899tiYlbSNr1f58X2hvoZOYKuCYHslbedsVtI2vl7pmpORe1Fsp7WVAbI4nto6r+mpZnfdM2YWgfOK+Kv/fuLIuU497aPx/IMPKl+rtnT8Rz+4orymztPRbhDtnqsKp+X56mvoUZWRXwm14oHO4+BefuNpW8f2WxcXWJx83ZrHYuasmcX27OLIuhheuzbWrE0/eR+xdt3aWLd+fbmItLiz/+a8OPIVr4utN/qVUCviko9+ML51e3c32fkV8d5Tjo6RX9pz57fjrDOujr1O+/M4fF63rRz3qYgTUlt9u3t4RGf+FUf/Xbxhj25T6fr44rv/LqrfPBmxON527ttit7RZnm95HD1q/38Xwadjn9+rzTXq2IY5Vl78V/GRb/zXyLWs/PwfxGfStzYm+/5BnF0ElQ1q64/auUetI633mzF/5B40rnnUOnaJlx67ML517cKR+3hT6/k796a69wv3XRxR9Nn43Mno+zXqHpTq6xk9b6n5niY972tn/IoFi+Oaq6vfkVZ7fwoj97cwat2pYYx70dHv/o0+V99r7zXuhs/ESZ/e8PvdOoq1pPevfI9rf5973IfyPbujum/de7qg+971vHcAtLngG8vilS9/Ydz7q+4Txh4uv/iiMmiNZfELDopDjziyu9du+63nxNf/ZVm85NjO7xLdnNbwwCNFYBul8wCxiITl1uXf/W782/d/0GkqPP/gF8SLjjoqljXa9y/aDy3ay0iZBm7IliO22WLWqDX0Mn+bp4z+PaV3Ptj/Rn398/+Qom53b2OzZ88qDs+Mx9Y8OnJ5yYJff0bsud+BseVWm+6fGV150enx4TuOjY+/uR7wNoHiC/5ff2h5vPhv6sFkao1cy5IVm+bcRSg68cKF8b5TG0FwCk3Z+zFZPe7FZrteADa5b/3rZfGqVx4W9z3UecI4Hbbbanb8r69fGi992YvK/c1pDfc/XF9DynX11NYxVAbUenuV/4q2cki3R3rSOdzpOdIjZcXurwfddsvRa+hl3lPnjO+fGT32+LfGkt99fc867NjXxouOeVUc1WhftPig2GLLLVvnnGjNO+plse/V18ZNLccmU6tu/HEs33lh52PmaarqWi6Z0LnvjEvO/EztPvwkvvipq2LhPntluYZN/X6Mrwa/F5vHepVSSk1bpY+SZ05fVT/oszmuobOdXlPV818a0/noPSXMTt9OW6dft2/6020o/tt57e5XbeXH+mm7bQ0tVRl5Urrqoebj3CeRGz4V7/6H9E9nPT/e/sm3x+6d1ukx2XPfeWF89PSvRfWJ+c4vPz1OOXJ+d+9Jxr0AoOHSi66Mffd+bixYMF2fH0bcccfKuPran8VhRx5Y7ltDZw297LTVrNEf39/10LruIQCAJ4YHH3go/u2H18XDD0/fPzO65ZZbxP4H7BVP3abzrYvW0P9bOH9tq5mjQ+nqh/v8nlEAAJgCT9tyxujvKS2/CUAppZRSSqnprK6RJ6V3P7LxT18BAMBU2nGLoc7H98ccc8zwp5d+uWcoverir3W3AABg/E444YT42e0PdPdGS6H0995y/GCh9Kqr0k+HAwDA+Jx22mmxyy67bLpQet5555X7y5Ytixe+sP038/c71ma8/afKRNbRa8ygc012PADAVHvkkUdi1apVMWvWrJgzZ075z4fWpd8zOjw8POr3jSbV7yBN4x999NGBQunomSehClPpdVDj7f941+tan0z3AACgzSZ5Utpsa+vTz6D9JxLexpq3OvdYaxjk3NU8TfV5m+drnre5DwCQy3Q+KR04lB533HHdlg3aQlVlPOEqVxCbTCBs6zue+XodS+1Ng64JAGBT2ixDaduT0mq7V5Cq2scKVfU5p0uvc/ZbS9t11lXXXI1vbvfTHJs09yejfv5NNedETfS6mvdwvHNMdjwAPNlMZygd1/eUNsNEtZ1em1Vv76easxkYplLzOurGWkv9mprb/bT1HXTspjAd5xjERN/naly6jupaxjPXZMcDAFNrQj/oVP9inrbrVdfc3xykNTUDWnOd6Xivtaf26lh9uym1t52n2dbvXI9H1T1pXlNb23RK97l57wGAyZk5c2b5BDW9TtbAoTQFil5f1Jtf8KcyfFThZpCqq9oGDSapX3Oeamyv16QaV29L+p27PqZ+vqZ0rF4TNdE56uPGOzZdW6/rH8RkxwMAm1YKounj/P333798nWwwHffH91UYGW8oaZPmqIJGeh1kziqcDFJ1bW1jaY6pr7eS9uvrrvo0r2WQeep69akqaZ5jUBOZo+o31tjqeNVnKtTXMl5p7GTGAwCdQJrqec97XmyxxRbxjne8Y9LBdOBQ2gwb9S/o9S/0T1Tp+nqFmKq93ie91u9Ltd1rfxATGTNV0vX1uh9Tqbr2iZ67vu7N4T4CwONNFUh322232HXXXeOII46IvfbaK84999xJBdMJfU9pUv+CPpGAksY3x6T9zTUotK21qa1P1da2Xe3Xpba2e1Pdl17jNhdpnVVtavV7AADkkULnW97ylnjta18br371q2O//fYrw+kBBxwQl19++UY/oT+ocX1PaT1sPBmDQf0eDFp1aX+q71uvcw9q0PGTOcdEVOeq7t94zz/d6wWAJ6p169bF0qVL4y/+4i/ida97XSxZsiQOOeSQWLx4cRx66KGxfv36bs/xGdfH9/XXuokEhF7hLLVvruEhra2txjpWV7+2tvtQtTXvQdUvtdfHNfv1UvWr5q7vD6J5/qRtbGqrqq4+LmnuD2qi4wZdPwDQXwqla9asKeuxxx4bea0qHZ+Icf/y/CR9Ua9/kW/bTpr7SVtbU69xEzWR8/XT7N9rbb3mrPq3Ha/mHu+akn7zDmKy4wGAJ5bp/OX5kULpnXc9MPzT/7q/tZYuXTr8zne+MyXWkSrCS9/t5mvz+CA1nr6TrfGea7LXVfUfa57xzKuUUkoptamrCJXDv/zlL4fvuOOO4dWrVw/fc889o+ree+8dea3XfffdN3z//fcPr1y5shyftOXMVCmHpjw64R90aioCVHer86Qt7defuDX3x1LNUZ83p2ot1Xr67TerfjxdV3UfqmtMqmN19eMAAE9kE/74fizNgNVPWyAbS68xg8y1qdcPAPBEtNn+2/d1KbT1qqnSK0wOEjKb2tZdFQAA0+tx96S06tt8rQwy11h9BpkDAOCJLj3pvPHGG+O2226L1atXd1s36PWkdPvtt49nPvOZ5RPSQZ+UTvqn79uMN9RNJAT2GpPam5r92vo0jXc9AABPNCmUfvOb3yz/ffsdd9yx2xplEE3S8fRrSYeH15dt1a+Luvfe++LWW38RBx988NSH0rFs6lA61jnT+OY8veYd63z9xtX1mwMA4PEuhc7PfvazccIJJ5T7neC5PtanELp+OB588FdlEF1XJNN1a9fFw488HPff/0Bsv9228b3vL4vXvPo1U/s9pSmMjVVNKdD1qkGO1+ft9TqV2tZRtQEAPJGlMJoq/WtNZRXBtPNU9LEidK4pg2eqhx9+ZOTYeA38pPS4447rtozfWKExhbtBgmW9X9t2c55e86b2sbSNq6vmGKsfAMDjVfWk9M1vfvPIU9IUOFMwTdv33ndfrH1sbaxdm6rz0X0Kp9ttt01c+cMfTM2T0hS+qgBWbbftt9Wm0CtgJqm9Oj5o4ByrAACYPuP+ntK20JdCXK/2sdTD5KBhsF/fXvOl/YnqNc+g6wUAeDzaLJ+U1qUwVlVdr/ZNIYXBqtr2x1JfW7MGOV6ptw16bgAA+ptQKB0rEKb2ZphrU++XXnvNl9TDYLVd7deltrHO3+88AABMv032pLQKg1NprLA5GWnuZtW1tQEAPJnMnDmz/OdGn/KUObHFFk+JbbfZJrbbbtvYYYftY8cdd4inPnXrbs/xm1AoTeohrXqtgukgwbGt3yDBtn68bY6qbax5mtKYZtVV+2neau5mHwCAJ7L0b98vOerI+NN3vzs+fMaH4txzzo5PfuLc+PrX/jl+cv01RVDdottz/AYOpfUwll7rwa0e2NJ21a+Xql+bfuPTsep4vzn6qcb1Okc/1fmrAgB4stl1113jkEMOiQMOPHCkdtt991i4887dHhMzcCitQlivQFYPiem1V+gbJEyONT5p61OfeyLHAQDoLf3U/dkfPyd+91WvKrLUi2Lx4v1jn332i2c96zmx007zy5/Wn6gJ/TOjdVWwq8JeXf1Yv369DDI+tVfH2+Ye5PhY2sYBADzRNX8l1IwZM+PIIw6P5z73uUUI3anbK2LBggXx9Kc/PXbdbc+4/fbl0/croepSYKtCWzPg1Y/161cZdHxS9a0fr9TnaTteVz/eq+p6rb1urD79jk92/kHGAwBMVPaP75OpDjwpAE7mHGlsNb7XPFWfevVrn2rTdR4AgMnarD6+TyGqeno4SKBqPmlM6nM09TtWV/VrrmGQsUmv84x1/vr56udvW0vSnKs5/1j7TW3H285b6TcXAEA/j5uP71PgqVevtn5SoKpXr7a61NZ2vvFI/Ztz1+ftp36+ev9e7WNpu8akV3ulOl6dt37u+j4AwKayZMmSOPbYY+Oo4rWqxc9/fjzjt36r22NiNtkPOrWph6K2ful4au8XntqO9xrTb6628w+qmrPfeftpG19tj/Va12wbpA8AwEQ1n5QW0bFsHx5eH+vXD8dDDz086t/Cf/DBB2P16rsn9KR00qG0btBAVPUbK2S1zZfakrbztPXflKpzV9K5eq2xeaxtbNIc3zZf0hyfVOcYS9t8AABjaYbSFDzrIfTe++6LtY+tjbVrU62LNWvWlCF0SkPpcccd120ZHagG0QxF/YLXWAGqOudExyeDrLvXmpvnqO+3zdu2nrHG1I01fizj6QsAULdZhtK2H3SaqCqIpXnGCmVJdb7q3IOMqWuud6xr6He8fqy+jnr/QccnY+039Tpeb6+2x5oLAKCfx1UoTfu99ApPSfNY27y99pvHKr3am1K/sTTnaRvTXE+/Pknb+upt9fHNfknb+Lrq+Fj9AAAGMZ2hdNK/PD9JAahZTSkoTSYsTXRcL/W1NqtN/Vi1na6nrq1Ppepb3Yfm2LRfH9t2vHqtV9WW1M8HAPB4sklCaTMoVSGprhnS6lL/6Q5UzfXWayKa45v71fVV96F+valP8/rTfjU2qY5XY6uq2up9AQAeb6btSWk/qX89wLWFtE2puc76fr19LKlftdbm2OZ+Ut+uG7S9rV/zvjW3q/1Kr/ZB5R4PAOSRPr5PlT66T1X+Wqh1ne1OrYv1qa2oiZhwKK2HinrQqGq8UuBKlcb2CmmTVa2rvr7qnG36XUe/Y2NJYzfF+FTVfasqqb9W2wAAE1V9P2n63tH0PaWd7y1N+491al3n+0rTsdR3IiYUSqswVKnCT70mopo3veZUnb/XWurrbOvTdv2pT1XpeFufftrGN+eojiXpNe039Ro7qNzjAYDptcMOO8S9994bQ0NFcJwxI2bOnBGzZs2M2bNnxVZbbRlbb711bLvtNkW/7eLXnrZjzJu7U/kDT9tvt313hsFskp++b9tvtieDHKu09anU5xlLNUd9vn5zJ/36Vvtt7b30mivpN67Sb3yl17F+YwAA+kk/fX/dddfFbbfdFqvvXt1tHVsKpHPnzo0999xz6n4lVFOvoDVoeEr7yXgCVb/5B1Wdt5fJzj9d+t2/ZFPcKwDgySmF0lWrVsWsWbNizpw55ZPSuqGhofLj+vRal/ZTpfHTFkoBAHhims5Qukl++h4AACZDKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBABjYzJkzY86cOWXNnj175LWqdHwihFIAAAaWQudBBx0UixYtKmufffaJJUuWxIknnhjnnXdezJgxsXgplAIAMLB169bFFVdcUQbSAw88MF75ylfGO9/5zjj++OPL1/Xr13d7jo9QCgDAwFIoTbV06dKYO3duGU6f85znxOLFi8tAmo5NhFAKAEBfQ0NDoyqFz1Qf/OAHy4/zn/e8500qkCZCKQAAfaXg2RZMh4eH4yUveUn5mvabfcZDKAUAoK8UStMPMDVDZwqia9eunXQgTYRSAAD6qgJpU9VWD6Nt/QYhlAIA0FfbU9JBajyEUgAA+uoVSpPqdbKEUgAA+nrooYcmVOMxdMwxxwx/eumX4+5HhrtNo1118dfi8MMP7+4BAMD47LLLLvGz2x/o7o224xZD8XtvOX7sUPrcnbfpbgEAwMRMOpQCAMBUqUKp7ykFACA7oRQAgOyEUgAAshNKAQDITigFACC7kZ++BwCAHEZ+JVR3HwAAMoj4//wiXY9Cle3CAAAAAElFTkSuQmCC" alt="" />