hdu 1796 How many integers can you find 容斥定理

时间:2025-02-17 12:03:26

How many integers can you find

Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Problem Description
  Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
Input
  There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
Output
  For each case, output the number.
Sample Input
12 2
2 3
Sample Output
7
Author
wangye
Source
思路:最简单的容斥,注意下可能输入0;奇加偶减
   比如12 2 
              2   3
     ans=11/2+11/3-11/6;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll __int64
#define mod 1000000007
#define inf 999999999
//#pragma comment(linker, "/STACK:102400000,102400000")
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
ll a[];
ll ji;
ll ans,x,y;
ll gcd(ll x,ll y)
{
return y==?x:gcd(y,x%y);
}
void dfs(ll lcm,ll pos,ll step)
{
if(lcm>x)
return;
if(pos==ji)
{
if(step==)
return;
if(step&)
ans+=x/lcm;
else
ans-=x/lcm;
return;
}
dfs(lcm,pos+,step);
dfs(lcm/gcd(a[pos],lcm)*a[pos],pos+,step+);
}
int main()
{
ll z,i,t;
while(~scanf("%I64d%I64d",&x,&y))
{
x--;
ji=;
for(i=;i<y;i++)
{
scanf("%I64d",&z);
if(z==)continue;
a[ji++]=z;
}
ans=;
dfs(,,);
printf("%I64d\n",ans);
}
return ;
}