How many integers can you find
给定一个包括m个数的集合,数不超过20,问有多少个<n的数,能够被集合中的数整除。
关键问题是重复计算,比如6可以被2整除,也可以被3整除,计数了两次,所以要用到容斥原理。
容斥就是对于重叠次数只有奇数次的,我们加上,重叠次数为偶数次的,我们要减去。
对于每个数,都计算重叠一次的,重叠两次的,重叠三次的...最多重叠m次,有m个数
所以要用到DFS,然后保存中间态重叠x次的最小公倍数lcm,符合题意的数有(n-1)/lcm个
(** 1~n之间有多少个能被x整除的数,公式为n/x,题目中要求小于n,所以(n-1)/x **),根据
step重叠的次数或者加上,或者减去。
比如n=7,m=2,集合中的数为2 3
首先对于2,重叠一次,lcm=2,7/2=3,有3个符合的数(其实是2,4,6),因为重叠次数是奇数,所以
ans+=3,这时中间态lcm=2,然后继续dfs剩下的数(因为要和其它数组和在一块进行重叠,这里只剩下3了),
重叠两次, lcm=LCM(lcm,3), lcm=LCM(2,3)=6,7/6=1,重叠次数为偶数,ans-=1,这样以2开始的所有情况就完了。
再对于3,重叠一次,lcm=3,7/3=2,有两个符合的数,ans+=2.最终ans=4
#include <iostream> #include <stdio.h> #include <algorithm> #include <string.h> #include <stdlib.h> #include <cmath> #include <iomanip> #include <vector> #include <set> #include <map> #include <stack> #include <queue> #include <cctype> #define rd(x) scanf("%d",&x) #define rd2(x,y) scanf("%d%d",&x,&y) #define rd3(x,y,z) scanf("%d%d%d",&x,&y,&z) using namespace std; typedef long long ll; const int inf=0x3f3f3f3f; const int maxn=25; ll num[maxn];//寸有效数字 int cnt; ll ans; ll n,m; ll gcd(ll a,ll b) { return b==0?a:gcd(b,a%b); } ll LCM(ll a,ll b) { return a*b/gcd(a,b); } void dfs(int th,ll now,int step)//th,该数是num中的第几个,now是当前的最小公倍数,step是重叠几次,最多cnt次 { if(step>cnt) return; ll lcm=LCM(num[th],now);//这里lcm是step个数的最小公倍数 if(step&1) ans+=(n-1)/lcm;//1~n之间有多少个能被x整除的数,公式为n/x,题目中要求小于n,所以(n-1)/x else ans-=(n-1)/lcm; for(int p=th+1;p<cnt;p++) dfs(p,lcm,step+1); } int main() { while(scanf("%I64d%I64d",&n,&m)!=EOF) { cnt=0; ans=0; ll val; while(m--) { scanf("%I64d",&val); if(val>0&&val<n) num[cnt++]=val; } for(int i=0;i<cnt;i++)//从每个数开始,搜索重叠一次,两次,三次.... { dfs(i,num[i],1); } printf("%I64d\n",ans); } return 0; }
第二种方法:枚举二进制位
将符合条件的m个数,看作m位,每位是0或者是1,那么一共有2^m种状态,只要判断一下每一个状态有多少个1,也就是有多少个数(重叠多少次),记为k,每一个1代表哪几个具体的数,求这几个数的最小公倍数,然后(n-1)/lcm, 利用k的值来判断应该减去还是加上。
#define rd(x) scanf("%d",&x) #define rd2(x,y) scanf("%d%d",&x,&y) #define rd3(x,y,z) scanf("%d%d%d",&x,&y,&z) using namespace std; typedef long long ll; const int inf=0x3f3f3f3f; const int maxn=25; ll num[maxn];//存有效数字 int cnt; ll ans; ll n,m; ll gcd(ll a,ll b) { return b==0?a:gcd(b,a%b); } ll LCM(ll a,ll b) { return a*b/gcd(a,b); } int main() { while(scanf("%I64d%I64d",&n,&m)!=EOF) { cnt=0; ans=0; ll val; for(int i=1;i<=m;i++) { scanf("%I64d",&val); if(val>0&&val<n) num[cnt++]=val; } for(int i=1;i<(1<<cnt);i++)//把cnt个数看作cnt位,每位是0或者1 { //下面就是求状态i里面有多少个1,也就是重叠多少次,用k表示 int k=0; ll lcm=1; for(int j=0;j<cnt;j++) { if(i&(1<<j)) { k++; lcm=LCM(lcm,num[j]);//求出这k个数的最小公倍数 } } if(k&1) ans+=(n-1)/lcm; else ans-=(n-1)/lcm; } printf("%I64d\n",ans); } return 0; }