Vector源码分析和实例应用

时间:2025-02-12 22:06:50

1、Vector介绍

  • Vector 是矢量队列,它是JDK1.0版本添加的类。继承于AbstractList,实现了List, RandomAccess, Cloneable这些接口。
  • Vector 继承了AbstractList,实现了List;所以,它是一个队列,支持相关的添加、删除、修改、遍历等功能
  • Vector 实现了RandmoAccess接口,即提供了随机访问功能。RandmoAccess接口被List实现以便于为List提供快速访问功能。在Vector中,我们即可以通过元素的下角标快速获取元素对象,这就是快速随机访问。
  • Vector 实现了Cloneable接口,即实现clone()函数。它能被克隆。
  • Vector 实现了java.io.Serializable接口,说明vector支持序列化
  • 和ArrayList不同,Vector中的操作是线程安全的

2、Vector数据结构

 java.lang.Object
↳ java.util.AbstractCollection<E>
↳ java.util.AbstractList<E>
↳ java.util.Vector<E> public class Vector<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable {}

Vector源码分析和实例应用

Vector的数据结构和ArrayList差不多,它包含了3个成员变量:elementData , elementCount, capacityIncrement。

(01) elementData 是"Object[]类型的数组",它保存了添加到Vector中的元素。elementData是个动态数组,如果初始化Vector时,没指定动态数组的>大小,则使用默认大小10。随着Vector中元素的增加,Vector的容量也会动态增长,capacityIncrement是与容量增长相关的增长系数,具体的增长方式,请参考源码分析中的ensureCapacity()函数。

(02) elementCount 是动态数组的实际大小。

(03) capacityIncrement 是动态数组的增长系数。如果在创建Vector时,指定了capacityIncrement的大小;则,每次当Vector中动态数组容量增加时>,增加的大小都是capacityIncrement。

3、Vector源码分析

 package java.util;

 public class Vector<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{ // 保存Vector中数据的数组
protected Object[] elementData; // 实际数据的数量
protected int elementCount; // 容量增长系数
protected int capacityIncrement; // Vector的序列版本号
private static final long serialVersionUID = -2767605614048989439L; // Vector构造函数。默认容量是10。
public Vector() {
this(10);
} // 指定Vector容量大小的构造函数
public Vector(int initialCapacity) {
this(initialCapacity, 0);
} // 指定Vector"容量大小"和"增长系数"的构造函数
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
// 新建一个数组,数组容量是initialCapacity
this.elementData = new Object[initialCapacity];
// 设置容量增长系数
this.capacityIncrement = capacityIncrement;
} // 指定集合的Vector构造函数。
public Vector(Collection<? extends E> c) {
// 获取“集合(c)”的数组,并将其赋值给elementData
elementData = c.toArray();
// 设置数组长度
elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
} // 将数组Vector的全部元素都拷贝到数组anArray中
public synchronized void copyInto(Object[] anArray) {
System.arraycopy(elementData, 0, anArray, 0, elementCount);
} // 将当前容量值设为实际元素个数
public synchronized void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (elementCount < oldCapacity) {
elementData = Arrays.copyOf(elementData, elementCount);
}
} // 确认“Vector容量”的帮助函数
private void ensureCapacityHelper(int minCapacity) {
int oldCapacity = elementData.length;
// 当Vector的容量不足以容纳当前的全部元素,增加容量大小。
// 若 容量增量系数>0(即capacityIncrement>0),则将容量增大当capacityIncrement
// 否则,将容量增大一倍。
if (minCapacity > oldCapacity) {
Object[] oldData = elementData;
int newCapacity = (capacityIncrement > 0) ?
(oldCapacity + capacityIncrement) : (oldCapacity * 2);
if (newCapacity < minCapacity) {
newCapacity = minCapacity;
}
elementData = Arrays.copyOf(elementData, newCapacity);
}
} // 确定Vector的容量。
public synchronized void ensureCapacity(int minCapacity) {
// 将Vector的改变统计数+1
modCount++;
ensureCapacityHelper(minCapacity);
} // 设置容量值为 newSize
public synchronized void setSize(int newSize) {
modCount++;
if (newSize > elementCount) {
// 若 "newSize 大于 Vector容量",则调整Vector的大小。
ensureCapacityHelper(newSize);
} else {
// 若 "newSize 小于/等于 Vector容量",则将newSize位置开始往后的元素都设置为null
for (int i = newSize ; i < elementCount ; i++) {
elementData[i] = null;
}
}
//最后一定是要保证当前的数组容量就是等于设置的容量大小
elementCount = newSize;
} // 返回“Vector的总的容量”,这里的总的容量不定是数组中世纪元素的个数
public synchronized int capacity() {
return elementData.length;
} // 返回“Vector的实际大小”,即Vector中实际元素个数
public synchronized int size() {
return elementCount;
} // 判断Vector是否为空
public synchronized boolean isEmpty() {
return elementCount == 0;
} // 返回“Vector中全部元素对应的Enumeration”
public Enumeration<E> elements() {
// 通过匿名类方式实现Enumeration类
return new Enumeration<E>() {
int count = 0; // 是否存在下一个元素
public boolean hasMoreElements() {
return count < elementCount;
} // 获取下一个元素
public E nextElement() {
synchronized (Vector.this) {
if (count < elementCount) {
return (E)elementData[count++];
}
}
throw new NoSuchElementException("Vector Enumeration");
}
};
} // 返回Vector中是否包含对象(o)
public boolean contains(Object o) {
return indexOf(o, 0) >= 0;
} // 从index位置开始向后查找元素(o)。
// 若找到,则返回元素的索引值;否则,返回-1
public synchronized int indexOf(Object o, int index) {
if (o == null) {
// 若查找元素为null,则正向找出null元素,并返回它对应的序号
for (int i = index ; i < elementCount ; i++)
if (elementData[i]==null)
return i;
} else {
// 若查找元素不为null,则正向找出该元素,并返回它对应的序号
for (int i = index ; i < elementCount ; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
} // 查找并返回元素(o)在Vector中的索引值,这里相当于是从第一个位置开始查找,调用的还是indexOf(Object o, int index) 函数
public int indexOf(Object o) {
return indexOf(o, 0);
} // 从后向前查找元素(o)。并返回元素的索引
public synchronized int lastIndexOf(Object o) {
return lastIndexOf(o, elementCount-1);
} // 从后向前查找元素(o)。开始位置是从前向后的第index个数;
// 若找到,则返回元素的“索引值”;否则,返回-1。
public synchronized int lastIndexOf(Object o, int index) {
//首先判断输入的索引值时候合法
if (index >= elementCount)
throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
//然后分对象是否为空两种情况
if (o == null) {
// 若查找元素为null,则反向找出null元素,并返回它对应的序号
for (int i = index; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
// 若查找元素不为null,则反向找出该元素,并返回它对应的序号
for (int i = index; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
} // 返回Vector中index位置的元素。
// 若index输入非法,则抛出异常
public synchronized E elementAt(int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
} return (E)elementData[index];
} // 获取Vector中的第一个元素。
// 若数组为空,则抛出异常!
public synchronized E firstElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return (E)elementData[0];
} // 获取Vector中的最后一个元素。
// 若数组为空,则抛出异常!
public synchronized E lastElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return (E)elementData[elementCount - 1];
} // 设置index位置的元素值为obj
public synchronized void setElementAt(E obj, int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
elementData[index] = obj;
} // 删除index位置的元素,这个操作比较麻烦一点
public synchronized void removeElementAt(int index) {
modCount++;
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
} else if (index < 0) {
throw new ArrayIndexOutOfBoundsException(index);
} int j = elementCount - index - 1;
if (j > 0) {
System.arraycopy(elementData, index + 1, elementData, index, j);
}
elementCount--;
elementData[elementCount] = null; /* to let gc do its work */
} // 在index位置处插入元素(obj)
public synchronized void insertElementAt(E obj, int index) {
modCount++;
if (index > elementCount) {
throw new ArrayIndexOutOfBoundsException(index
+ " > " + elementCount);
}
//确保数组长度能够装下这个元素
ensureCapacityHelper(elementCount + 1);
//调用 System.arraycopy()函数把当前要插入位置空出来,该索引值后边的元素全部向后移动一个位置
System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
elementData[index] = obj;
elementCount++;
} // 将“元素obj”添加到Vector末尾
public synchronized void addElement(E obj) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = obj;
} // 在Vector中查找并删除元素obj。
// 成功的话,返回true;否则,返回false。
public synchronized boolean removeElement(Object obj) {
modCount++;
int i = indexOf(obj);
if (i >= 0) {
removeElementAt(i);
return true;
}
return false;
} // 删除Vector中的全部元素
public synchronized void removeAllElements() {
modCount++;
// 将Vector中的全部元素设为null
for (int i = 0; i < elementCount; i++)
elementData[i] = null;
elementCount = 0;
} // 克隆函数
public synchronized Object clone() {
try {
Vector<E> v = (Vector<E>) super.clone();
// 将当前Vector的全部元素拷贝到v中
v.elementData = Arrays.copyOf(elementData, elementCount);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
} // 返回Object数组
public synchronized Object[] toArray() {
return Arrays.copyOf(elementData, elementCount);
} // 返回Vector的模板数组。所谓模板数组,即可以将T设为任意的数据类型
public synchronized <T> T[] toArray(T[] a) {
// 若数组a的大小 < Vector的元素个数;
// 则新建一个T[]数组,数组大小是“Vector的元素个数”,并将“Vector”全部拷贝到新数组中
if (a.length < elementCount)
return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass()); // 若数组a的大小 >= Vector的元素个数;
// 则将Vector的全部元素都拷贝到数组a中。
System.arraycopy(elementData, 0, a, 0, elementCount); if (a.length > elementCount)
a[elementCount] = null; return a;
} // 获取index位置的元素
public synchronized E get(int index) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index); return (E)elementData[index];
} // 设置index位置的值为element。并返回index位置的原始值
public synchronized E set(int index, E element) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index); Object oldValue = elementData[index];
elementData[index] = element;
return (E)oldValue;
} // 将“元素e”添加到Vector最后。
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
} // 删除Vector中的元素o
public boolean remove(Object o) {
return removeElement(o);
} // 在index位置添加元素element
public void add(int index, E element) {
insertElementAt(element, index);
} // 删除index位置的元素,并返回index位置的原始值
public synchronized E remove(int index) {
modCount++;
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
Object oldValue = elementData[index]; int numMoved = elementCount - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--elementCount] = null; // Let gc do its work return (E)oldValue;
} // 清空Vector
public void clear() {
removeAllElements();
} // 返回Vector是否包含集合c
public synchronized boolean containsAll(Collection<?> c) {
return super.containsAll(c);
} // 将集合c添加到Vector中
public synchronized boolean addAll(Collection<? extends E> c) {
modCount++;
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
// 将集合c的全部元素拷贝到数组elementData中
System.arraycopy(a, 0, elementData, elementCount, numNew);
elementCount += numNew;
return numNew != 0;
} // 删除集合c的全部元素
public synchronized boolean removeAll(Collection<?> c) {
return super.removeAll(c);
} // 删除“非集合c中的元素”
public synchronized boolean retainAll(Collection<?> c) {
return super.retainAll(c);
} // 从index位置开始,将集合c添加到Vector中
public synchronized boolean addAll(int index, Collection<? extends E> c) {
modCount++;
if (index < 0 || index > elementCount)
throw new ArrayIndexOutOfBoundsException(index); Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew); int numMoved = elementCount - index;
if (numMoved > 0)
//先把带插入位置腾出来
System.arraycopy(elementData, index, elementData, index + numNew, numMoved);
//再把带插入元素插入到指定的位置区间
System.arraycopy(a, 0, elementData, index, numNew);
elementCount += numNew;
return numNew != 0;
} // 返回两个对象是否相等
public synchronized boolean equals(Object o) {
return super.equals(o);
} // 计算哈希值
public synchronized int hashCode() {
return super.hashCode();
} // 调用父类的toString()
public synchronized String toString() {
return super.toString();
} // 获取Vector中fromIndex(包括)到toIndex(不包括)的子集
public synchronized List<E> subList(int fromIndex, int toIndex) {
return Collections.synchronizedList(super.subList(fromIndex, toIndex), this);
} // 删除Vector中fromIndex到toIndex的元素
protected synchronized void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = elementCount - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved); // 接下来把带删除元素全部赋值为空,以便于虚拟机进行垃圾回收
int newElementCount = elementCount - (toIndex-fromIndex);
while (elementCount != newElementCount)
elementData[--elementCount] = null;
} // java.io.Serializable的写入函数
private synchronized void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
s.defaultWriteObject();
}
}

总结:

  • Vector实际上是通过一个动态数组去保存数据的。当我们构造Vecotr时;若使用默认构造函数,则Vector的默认容量大小是10。
  • 当Vector容量不足以容纳全部元素时,Vector的容量会增加。若容量增加系数 >0,则将容量的值增加“容量增加系数”;否则,将容量大小增加一倍。
  • Vector的克隆函数,即是将全部元素克隆到一个数组中。
  • Vector在源代码中的一个匿名内部类来实现
  // 返回“Vector中全部元素对应的Enumeration”
public Enumeration<E> elements() {
// 通过匿名类方式实现Enumeration类
return new Enumeration<E>() {
int count = 0; // 是否存在下一个元素
public boolean hasMoreElements() {
return count < elementCount;
} // 获取下一个元素
public E nextElement() {
synchronized (Vector.this) {
if (count < elementCount) {
return (E)elementData[count++];
}
}
throw new NoSuchElementException("Vector Enumeration");
}
};
}

4、Vector遍历方法

Vector支持4种遍历方式。建议使用下面的第二种去遍历Vector,因为效率问题。遍历Vector,使用索引的随机访问方式最快,使用迭代器最慢。

  • 通过迭代器遍历。即通过Iterator去遍历。
  • 随机访问,通过索引值去遍历。
  • 另一种for循环
  • Enumeration遍历。

5、Vector常用API的测试实例

 import java.util.Vector;
import java.util.List;
import java.util.Iterator;
import java.util.Enumeration; /**
* @desc Vector测试函数:遍历Vector和常用API
*
* @author skywang
*/
public class VectorTest {
public static void main(String[] args) {
// 新建Vector
Vector vec = new Vector(); // 添加元素
vec.add("1");
vec.add("2");
vec.add("3");
vec.add("4");
vec.add("5"); // 设置第一个元素为100
vec.set(0, "100");
// 将“500”插入到第3个位置
vec.add(2, "300");
System.out.println("vec:"+vec); // (顺序查找)获取100的索引
System.out.println("vec.indexOf(100):"+vec.indexOf("100"));
// (倒序查找)获取100的索引
System.out.println("vec.lastIndexOf(100):"+vec.lastIndexOf("100"));
// 获取第一个元素
System.out.println("vec.firstElement():"+vec.firstElement());
// 获取第3个元素
System.out.println("vec.elementAt(2):"+vec.elementAt(2));
// 获取最后一个元素
System.out.println("vec.lastElement():"+vec.lastElement()); // 获取Vector的大小
System.out.println("size:"+vec.size());
// 获取Vector的总的容量
System.out.println("capacity:"+vec.capacity()); // 获取vector的“第2”到“第4”个元素
System.out.println("vec 2 to 4:"+vec.subList(1, 4)); // 通过Enumeration遍历Vector
Enumeration enu = vec.elements();
while(enu.hasMoreElements())
System.out.println("nextElement():"+enu.nextElement()); Vector retainVec = new Vector();
retainVec.add("100");
retainVec.add("300");
// 获取“vec”中包含在“retainVec中的元素”的集合
System.out.println("vec.retain():"+vec.retainAll(retainVec));
System.out.println("vec:"+vec); // 获取vec对应的String数组
String[] arr = (String[]) vec.toArray(new String[0]);
for (String str:arr)
System.out.println("str:"+str); // 清空Vector。clear()和removeAllElements()一样!
vec.clear();
// vec.removeAllElements(); // 判断Vector是否为空
System.out.println("vec.isEmpty():"+vec.isEmpty());
}
}
 vec:[100, 2, 300, 3, 4, 5]
vec.indexOf(100):0
vec.lastIndexOf(100):0
vec.firstElement():100
vec.elementAt(2):300
vec.lastElement():5
size:6
capacity:10
vec 2 to 4:[2, 300, 3]
nextElement():100
nextElement():2
nextElement():300
nextElement():3
nextElement():4
nextElement():5
vec.retain():true
vec:[100, 300]
str:100
str:300
vec.isEmpty():true