Android Audio System 之一:AudioTrack如何与AudioFlinger

时间:2021-04-30 13:05:26
Android Framework的音频子系统中,每一个音频流对应着一个AudioTrack类的一个实例,每个AudioTrack会在创建时注册到 AudioFlinger中,由AudioFlinger把所有的AudioTrack进行混合(Mixer),然后输送到AudioHardware中 进行播放

引子

Android Framework的音频子系统中,每一个音频流对应着一个AudioTrack类的一个实例,每个AudioTrack会在创建时注册到 AudioFlinger中,由AudioFlinger把所有的AudioTrack进行混合(Mixer),然后输送到AudioHardware中 进行播放,目前Android的Froyo版本设定了同时最多可以创建32个音频流,也就是说,Mixer最多会同时处理32个AudioTrack的数 据流。

如何使用AudioTrack

AudioTrack的主要代码位于 frameworks/base/media/libmedia/audiotrack.cpp中。现在先通过一个例子来了解一下如何使用 AudioTrack,ToneGenerator是android中产生电话拨号音和其他音调波形的一个实现,我们就以它为例子:

ToneGenerator的初始化函数:

  1. bool ToneGenerator::initAudioTrack() {
  2. // Open audio track in mono, PCM 16bit
  3. //, default sampling rate, default buffer size
  4. mpAudioTrack = new AudioTrack();
  5. mpAudioTrack->set(mStreamType,
  6. 0,
  7. AudioSystem::PCM_16_BIT,
  8. AudioSystem::CHANNEL_OUT_MONO,
  9. 0,
  10. 0,
  11. audioCallback,
  12. this,
  13. 0,
  14. 0,
  15. mThreadCanCallJava);
  16. if (mpAudioTrack->initCheck() != NO_ERROR) {
  17. LOGE("AudioTrack->initCheck failed");
  18. goto initAudioTrack_exit;
  19. }
  20. mpAudioTrack->setVolume(mVolume, mVolume);
  21. mState = TONE_INIT;
  22. ......
  23. }

可见,创建步骤很简单,先new一个AudioTrack的实例,然后调用set成员函数完成参数的设置并注册到AudioFlinger中,然后 可以调 用其他诸如设置音量等函数进一步设置音频参数。其中,一个重要的参数是audioCallback,audioCallback是一个回调函数,负责响应 AudioTrack的通知,例如填充数据、循环播放、播放位置触发等等。回调函数的写法通常像这样:

  1. void ToneGenerator::audioCallback(int event, void* user, void *info) {
  2. if (event != AudioTrack::EVENT_MORE_DATA) return;
  3. AudioTrack::Buffer *buffer = static_cast<AudioTrack::Buffer *>(info);
  4. ToneGenerator *lpToneGen = static_cast<ToneGenerator *>(user);
  5. short *lpOut = buffer->i16;
  6. unsigned int lNumSmp = buffer->size/sizeof(short);
  7. const ToneDescriptor *lpToneDesc = lpToneGen->mpToneDesc;
  8. if (buffer->size == 0) return;
  9. // Clear output buffer: WaveGenerator accumulates into lpOut buffer
  10. memset(lpOut, 0, buffer->size);
  11. ......
  12. // 以下是产生音调数据的代码,略....
  13. }

该函数首先判断事件的类型是否是EVENT_MORE_DATA,如果是,则后续的代码会填充相应的音频数据后返回,当然你可以处理其他事件,以下是可用的事件类型:

  1. enum event_type {
  2. EVENT_MORE_DATA = 0,
  3. // Request to write more data to PCM buffer.
  4. EVENT_UNDERRUN = 1,
  5. // PCM buffer underrun occured.
  6. EVENT_LOOP_END = 2,
  7. // Sample loop end was reached; playback restarted from loop start if loop count was not 0.
  8. EVENT_MARKER = 3,
  9. // Playback head is at the specified marker position (See setMarkerPosition()).
  10. EVENT_NEW_POS = 4,
  11. // Playback head is at a new position (See setPositionUpdatePeriod()).
  12. EVENT_BUFFER_END = 5
  13. // Playback head is at the end of the buffer.
  14. };

开始播放:

  1. mpAudioTrack->start();

停止播放:

  1. mpAudioTrack->stop();

只要简单地调用成员函数start()和stop()即可。

AudioTrack和AudioFlinger的通信机制

通常,AudioTrack和AudioFlinger并不在同一个进程中,它们通过android中的binder机制建立联系。

AudioFlinger是android中的一个service,在android启动时就已经被加载。下面这张图展示了他们两个的关系:

Android Audio System 之一:AudioTrack如何与AudioFlinger

图一 AudioTrack和AudioFlinger的关系

我们可以这样理解这张图的含义:

  • audio_track_cblk_t实现了一个环形FIFO;
  • AudioTrack是FIFO的数据生产者;
  • AudioFlinger是FIFO的数据消费者。

建立联系的过程

下面的序列图展示了AudioTrack和AudioFlinger建立联系的过程:

Android Audio System 之一:AudioTrack如何与AudioFlinger

图二 AudioTrack和AudioFlinger建立联系

解释一下过程:

  • Framework或者Java层通过JNI,new AudioTrack();
  • 根据StreamType等参数,通过一系列的调用getOutput();
  • 如有必要,AudioFlinger根据StreamType打开不同硬件设备;
  • AudioFlinger为该输出设备创建混音线程: MixerThread(),并把该线程的id作为getOutput()的返回值返回给AudioTrack;
  • AudioTrack通过binder机制调用AudioFlinger的createTrack();
  • AudioFlinger注册该AudioTrack到MixerThread中;
  • AudioFlinger创建一个用于控制的TrackHandle,并以IAudioTrack这一接口作为createTrack()的返回值;
  • AudioTrack通过IAudioTrack接口,得到在AudioFlinger中创建的FIFO(audio_track_cblk_t);
  • AudioTrack创建自己的监控线程:AudioTrackThread;

自此,AudioTrack建立了和AudioFlinger的全部联系工作,接下来,AudioTrack可以:

  • 通过IAudioTrack接口控制该音轨的状态,例如start,stop,pause等等;
  • 通过对FIFO的写入,实现连续的音频播放
  • 监控线程监控事件的发生,并通过audioCallback回调函数与用户程序进行交互;

FIFO的管理

audio_track_cblk_t

audio_track_cblk_t这个结构是FIFO实现的关键,该结构是在createTrack的时候,由AudioFlinger申请相 应的内存,然后通过IMemory接口返回AudioTrack的,这样AudioTrack和AudioFlinger管理着同一个 audio_track_cblk_t,通过它实现了环形FIFO,AudioTrack向FIFO中写入音频数据,AudioFlinger从FIFO 中读取音频数据,经Mixer后送给AudioHardware进行播放。

audio_track_cblk_t的主要数据成员:

user             -- AudioTrack当前的写位置的偏移
    userBase     -- AudioTrack写偏移的基准位置,结合user的值方可确定真实的FIFO地址指针
    server          -- AudioFlinger当前的读位置的偏移
    serverBase  -- AudioFlinger读偏移的基准位置,结合server的值方可确定真实的FIFO地址指针

frameCount -- FIFO的大小,以音频数据的帧为单位,16bit的音频每帧的大小是2字节

buffers         -- 指向FIFO的起始地址

out               -- 音频流的方向,对于AudioTrack,out=1,对于AudioRecord,out=0

audio_track_cblk_t的主要成员函数:

framesAvailable_l()和framesAvailable()用于获取FIFO中可写的空闲空间的大小,只是加锁和不加锁的区别。

  1. uint32_t audio_track_cblk_t::framesAvailable_l()
  2. {
  3. uint32_t u = this->user;
  4. uint32_t s = this->server;
  5. if (out) {
  6. uint32_t limit = (s < loopStart) ? s : loopStart;
  7. return limit + frameCount - u;
  8. } else {
  9. return frameCount + u - s;
  10. }
  11. }

framesReady()用于获取FIFO中可读取的空间大小。

  1. uint32_t audio_track_cblk_t::framesReady()
  2. {
  3. uint32_t u = this->user;
  4. uint32_t s = this->server;
  5. if (out) {
  6. if (u < loopEnd) {
  7. return u - s;
  8. } else {
  9. Mutex::Autolock _l(lock);
  10. if (loopCount >= 0) {
  11. return (loopEnd - loopStart)*loopCount + u - s;
  12. } else {
  13. return UINT_MAX;
  14. }
  15. }
  16. } else {
  17. return s - u;
  18. }
  19. }

我们看看下面的示意图:

_____________________________________________

^                          ^                             ^                           ^

buffer_start              server(s)                 user(u)                  buffer_end

很明显,frameReady = u - s,frameAvalible = frameCount - frameReady = frameCount - u + s

可能有人会问,应为这是一个环形的buffer,一旦user越过了buffer_end以后,应该会发生下面的情况:

_____________________________________________

^                ^             ^                                                     ^

buffer_start     user(u)     server(s)                                   buffer_end

这时候u在s的前面,用上面的公式计算就会错误,但是android使用了一些技巧,保证了上述公式一直成立。我们先看完下面三个函数的代码再分析:

  1. uint32_t audio_track_cblk_t::stepUser(uint32_t frameCount)
  2. {
  3. uint32_t u = this->user;
  4. u += frameCount;
  5. ......
  6. if (u >= userBase + this->frameCount) {
  7. userBase += this->frameCount;
  8. }
  9. this->user = u;
  10. ......
  11. return u;
  12. }
  1. bool audio_track_cblk_t::stepServer(uint32_t frameCount)
  2. {
  3. // the code below simulates lock-with-timeout
  4. // we MUST do this to protect the AudioFlinger server
  5. // as this lock is shared with the client.
  6. status_t err;
  7. err = lock.tryLock();
  8. if (err == -EBUSY) { // just wait a bit
  9. usleep(1000);
  10. err = lock.tryLock();
  11. }
  12. if (err != NO_ERROR) {
  13. // probably, the client just died.
  14. return false;
  15. }
  16. uint32_t s = this->server;
  17. s += frameCount;
  18. // 省略部分代码
  19. // ......
  20. if (s >= serverBase + this->frameCount) {
  21. serverBase += this->frameCount;
  22. }
  23. this->server = s;
  24. cv.signal();
  25. lock.unlock();
  26. return true;
  27. }
  1. void* audio_track_cblk_t::buffer(uint32_t offset) const
  2. {
  3. return (int8_t *)this->buffers + (offset - userBase) * this->frameSize;
  4. }

stepUser()和stepServer的作用是调整当前偏移的位置,可以看到,他们仅仅是把成员变量user或server的值加上需要移动 的数量,user和server的值并不考虑FIFO的边界问题,随着数据的不停写入和读出,user和server的值不断增加,只要处理得 当,user总是出现在server的后面,因此frameAvalible()和frameReady()中的算法才会一直成立。根据这种算 法,user和server的值都可能大于FIFO的大小:framCount,那么,如何确定真正的写指针的位置呢?这里需要用到userBase这一 成员变量,在stepUser()中,每当user的值越过(userBase+frameCount),userBase就会增加 frameCount,这样,映射到FIFO中的偏移总是可以通过(user-userBase)获得。因此,获得当前FIFO的写地址指针可以通过成员 函数buffer()返回:

p = mClbk->buffer(mclbk->user);

在AudioTrack中,封装了两个函数:obtainBuffer()和releaseBuffer()操作 FIFO,obtainBuffer()获得当前可写的数量和写指针的位置,releaseBuffer()则在写入数据后被调用,它其实就是简单地调用 stepUser()来调整偏移的位置。

IMemory接口

在createTrack的过程中,AudioFlinger会根据传入的frameCount参数,申请一块内存,AudioTrack可以通过 IAudioTrack接口的getCblk()函数获得指向该内存块的IMemory接口,然后AudioTrack通过该IMemory接口的 pointer()函数获得指向该内存块的指针,这块内存的开始部分就是audio_track_cblk_t结构,紧接着是大小为frameSize的 FIFO内存。

IMemory->pointer() ---->|_______________________________________________________

|__audio_track_cblk_t__|_______buffer of FIFO(size==frameCount)____|

看看AudioTrack的createTrack()的代码就明白了:

  1. sp<IAudioTrack> track = audioFlinger->createTrack(getpid(),
  2. streamType,
  3. sampleRate,
  4. format,
  5. channelCount,
  6. frameCount,
  7. ((uint16_t)flags) << 16,
  8. sharedBuffer,
  9. output,
  10. &status);
  11. // 得到IMemory接口
  12. sp<IMemory> cblk = track->getCblk();
  13. mAudioTrack.clear();
  14. mAudioTrack = track;
  15. mCblkMemory.clear();
  16. mCblkMemory = cblk;
  17. // 得到audio_track_cblk_t结构
  18. mCblk = static_cast<audio_track_cblk_t*>(cblk->pointer());
  19. // 该FIFO用于输出
  20. mCblk->out = 1;
  21. // Update buffer size in case it has been limited by AudioFlinger during track creation
  22. mFrameCount = mCblk->frameCount;
  23. if (sharedBuffer == 0) {
  24. // 给FIFO的起始地址赋值
  25. mCblk->buffers = (char*)mCblk + sizeof(audio_track_cblk_t);
  26. } else {
  27. ..........
  28. }