摘要:通过本教程,我们学习了一类客流统计应用——区域内客流统计,通常用于室外安防,或室内客流热力图,经过简单改造还可以实现区域入侵检测、人员在离岗检测等应用。
客流分析之基于人形检测的划区域客流统计》,作者:HiLens_feige 。
在智慧园区、智慧门店等商业场景中,划区域的客流统计是一类常见的AI应用,本文介绍基于人形检测的划区域客流统计:采用人形框检测行人并进行跟踪,若人形框中心点位于事先划定的区域中,增加客流计数;区域内外的人形将使用不同颜色的框表示,画面中也会实时显示客流数量。
准备工作
本文将使用华为云ModelArts进行人形检测模型的训练,并使用ModelBox框架进行应用开发,使用前开发者需要完成如下准备工作:
技能开发
这个应用对应的ModelBox版本已经做成模板放在华为云OBS中,可以用sdk中的solution.bat工具下载,接下来我们给出该应用在ModelBox中的完整开发过程:
1)下载模板
执行.\solution.bat -l可看到当前公开的技能模板:
PS ███> .\solution.bat -l
...
Solutions name:
mask_det_yolo3
...
passenger_flow_person_det_yolo7
结果中的passenger_flow_person_det_yolo7即为基于人形检测的划区域客流统计应用模板,可使用如下命令下载模板:
PS ███> .\solution.bat -s passenger_flow_person_det_yolo7
...
solution.bat工具的参数中,-l 代表list,即列出当前已有的模板名称;-s 代表solution-name,即下载对应名称的模板。下载下来的模板资源,将存放在ModelBox核心库的solution目录下。
2)创建工程
在ModelBox sdk目录下使用create.bat创建passenger_flow_count工程
PS ███> .\create.bat -t server -n passenger_flow_count -s passenger_flow_person_det_yolo7 sdk version is modelbox-xxx success: create passenger_flow_count in ███\modelbox\workspace
create.bat工具的参数中,-t 表示创建事务的类别,包括工程(server)、Python功能单元(Python)、推理功能单元(infer)等;-n 代表name,即创建事务的名称;-s 代表solution-name,表示将使用后面参数值代表的模板创建工程,而不是创建空的工程。
workspace目录下将创建出passenger_flow_count工程,工程内容如下所示:
passenger_flow_count |--bin │ |--main.bat:应用执行入口 │ |--mock_task.toml:应用在本地执行时的输入输出配置,此应用默认使用本地视频文件为输入源,最终结果输出到另一本地视频文件,可根据需要修改 |--CMake:存放一些自定义CMake函数 |--data:存放应用运行所需要的图片、视频、文本、配置等数据 │ |--passenger_flow.mp4:客流统计测试用视频文件 │ |--simsun.ttc:中文字体库 |--dependence │ |--modelbox_requirements.txt:应用运行依赖的外部库在此文件定义,本应用依赖pillow、lap、scipy等工具包 |--etc │ |--flowunit:应用所需的功能单元存放在此目录 │ │ |--cpp:存放C++功能单元编译后的动态链接库,此应用没有C++功能单元 │ │ |--draw_passenger_bbox:客流画图功能单元 │ │ |--object_tracker:目标跟踪功能单元 │ │ |--yolov7_post:人形检测使用的是YOLO7模型,此处即为后处理功能单元 |--flowunit_cpp:存放C++功能单元的源代码,此应用没有C++功能单元 |--graph:存放流程图 │ |--passenger_flow_count.toml:默认流程图,使用本地视频文件作为输入源 │ |--modelbox.conf:modelbox相关配置 |--hilens_data_dir:存放应用输出的结果文件、日志、性能统计信息 |--model:推理功能单元目录 │ |--person_det:人形检测推理功能单元 │ │ |--person_det.toml:人形检测推理功能单元的配置文件 │ │ |--person_det.onnx:人形检测onnx模型 |--build_project.sh:应用构建脚本 |--CMakeLists.txt |--rpm:打包rpm时生成的目录,将存放rpm包所需数据 |--rpm_copyothers.sh:rpm打包时的辅助脚本
3)查看流程图
passenger_flow_count工程graph目录下存放流程图,默认的流程图passenger_flow_count.toml与工程同名,其内容为(以Windows版ModelBox为例):
[driver] # 功能单元的扫描路径,包含在[]中,多个路径使用,分隔 # ${HILENS_APP_ROOT} 表示当前应用的实际路径 # ${HILENS_MB_SDK_PATH} 表示ModelBox核心库的实际路径 dir = [ "${HILENS_APP_ROOT}/etc/flowunit", "${HILENS_APP_ROOT}/etc/flowunit/cpp", "${HILENS_APP_ROOT}/model", "${HILENS_MB_SDK_PATH}/flowunit", ] skip-default = true [profile] # 通过配置profile和trace开关启用应用的性能统计 profile = false # 是否记录profile信息,每隔60s记录一次统计信息 trace = false # 是否记录trace信息,在任务执行过程中和结束时,输出统计信息 dir = "${HILENS_DATA_DIR}/mb_profile" # profile/trace信息的保存位置 [flow] desc = "passenger detection using person detection with yolov7 for local video or rtsp video stream" # 应用的简单描述 [graph] format = "graphviz" # 流程图的格式,当前仅支持graphviz graphconf = """digraph passenger_flow_count { node [shape=Mrecord] queue_size = 4 batch_size = 1 # 定义节点,即功能单元及其属性 input1[type=input,flowunit=input,device=cpu,deviceid=0] data_source_parser[type=flowunit, flowunit=data_source_parser, device=cpu, deviceid=0] video_demuxer[type=flowunit, flowunit=video_demuxer, device=cpu, deviceid=0] video_decoder[type=flowunit, flowunit=video_decoder, device=cpu, deviceid=0, pix_fmt="rgb"] resize[type=flowunit flowunit=resize device=cpu deviceid="0" image_width=416, image_height=320] color_transpose[type=flowunit flowunit=packed_planar_transpose device=cpu deviceid="0"] normalize[type=flowunit flowunit=normalize device=cpu deviceid=0 standard_deviation_inverse="0.003921568, 0.003921568, 0.003921568"] person_det[type=flowunit flowunit=person_det device=cpu deviceid="0"] yolov7_post[type=flowunit flowunit=yolov7_post device=cpu deviceid="0"] object_tracker[type=flowunit, flowunit=object_tracker, device=cpu, deviceid=0] draw_passenger_bbox[type=flowunit, flowunit=draw_passenger_bbox, device=cpu, deviceid=0] video_out[type=flowunit flowunit=video_out device=cpu deviceid="0"] # 定义边,即功能间的数据传递关系 input1:input -> data_source_parser:in_data data_source_parser:out_video_url -> video_demuxer:in_video_url video_demuxer:out_video_packet -> video_decoder:in_video_packet video_decoder:out_video_frame -> resize:in_image resize:out_image -> color_transpose:in_image color_transpose:out_image -> normalize:in_data normalize:out_data -> person_det:input person_det:output -> yolov7_post:in_feat yolov7_post:out_data -> object_tracker:in_bbox object_tracker:out_track -> draw_passenger_bbox:in_track video_decoder:out_video_frame -> draw_passenger_bbox:in_image draw_passenger_bbox:out_image -> video_out:in_video_frame }"""
整个应用逻辑比较简单,视频解码后做图像预处理,接着是人形检测,模型后处理得到人形框,送入跟踪算法进行实时跟踪与区域内外判断,最后将跟踪信息画到图像输出到视频中。
4)核心逻辑
本应用的核心逻辑是跟踪与区域判断,跟踪逻辑在 object_tracker 功能单元中,使用的是 JDE(Towards Real-Time Multi-Object Tracking)算法,算法介绍可参考论文,本应用使用的是简化版本,未使用人形reid特征值做匹配。
区域判断在 draw_passenger_bbox 功能单元draw_passenger_bbox.py的 draw_tracking_object 函数中:
def draw_tracking_object(self, img_data, tracking_objects): '''在图中画出跟踪对象的检测框和过线的行人数据''' thickness = 2 GRAY = (117, 117, 117) GREEN = (0, 255, 0) YELLO = (255, 255, 0) # 画出区域边界线 cv2.polylines(img_data, [self.area], True, YELLO, 3) flow_count = 0 for track in tracking_objects: # 人形框的中心点 c_x = int((track["bbox"][0] + track["bbox"][2]) / 2) c_y = int((track["bbox"][1] + track["bbox"][3]) / 2) # 判断人形框的中心点是否在区域内 flag = cv2.pointPolygonTest(self.area, (c_x, c_y), False) if flag > 0: # 区域内人形框用绿色,同时客流计数增加 flow_count += 1 cv2.rectangle(img_data, (track["bbox"][0], track["bbox"][1]), (track["bbox"][2], track["bbox"][3]), GREEN, 2) else: # 区域内人形框用灰色 cv2.rectangle(img_data, (track["bbox"][0], track["bbox"][1]), (track["bbox"][2], track["bbox"][3]), GRAY, thickness) # 左上角显示实时的客流数量 img_data = self.put_chi_text( img_data, '客流计数:%d' % flow_count, (50, 20), YELLO, 50) return img_data
可以看到,我们使用了OpenCV的 pointPolygonTest 函数判断点与区域的位置关系。其中区域参数配置在draw_passenger_bbox.toml文件中,配置的是划定区域的4个顶点坐标,围成一个封闭的四边形:
... # 自定义的配置项 [config] area = ["0", "325", "1280", "25", "1280", "360", "0", "720"] # 客流统计的划定区域 ...
5)模型训练
本应用中包含模型推理部分,ModelBox内置了主流的推理引擎,如TensorFlow,TensorRT,LibTorch,Ascend ACL,MindSpore,以及Windows版本中所用的ONNXRuntime。在开发推理功能单元时,只需要准备模型文件,并配置对应的toml文件,即可完成推理功能单元的开发,无需掌握推理引擎的开发接口。
rknn格式。
【ModelBox】行人检测模型训练 页面,点击右上角的Run in ModelArts按钮,跟随教程一步步操作,也可以修改其中的代码、更换新的数据集训练出自己的模型。
6)三方依赖库
本应用中的画图功能单元依赖 pillow工具包以实现中文输出,ModelBox应用不需要手动安装三方依赖库,只需要配置在 dependence\modelbox_requirements.txt ,应用在编译时会自动安装。另外,中文输出还需要对应的字体库,存放在 data 目录下,画图功能单元初始化时将从此目录加载资源。
7)查看输入输出配置
查看任务配置文件bin/mock_task.toml,可以看到其中的任务输入和任务输出配置为如下内容::
[input] type = "url" url = "${HILENS_APP_ROOT}/data/passenger_flow.mp4" # 表示输入源为本地视频文件 [output] type = "local" url = "${HILENS_APP_ROOT}/hilens_data_dir/passenger_flow_result.mp4" # 表示输出为本地视频文件
即,使用本地视频文件data/passenger_flow.mp4作为输入,统计过线客流后,画图输出到本地视频文件data/passenger_flow_result.mp4中。
8)用启动脚本执行应用
启动应用前执行.\build_project.sh进行工程构建,该脚本将编译自定义的C++功能单元(本应用不涉及)、将应用运行时会用到的配置文件转码为Unix格式(防止执行过程中的格式错误)、安装第三方依赖库:
PS ███> .\build_project.sh
...
PS ███>
然后执行.\bin\main.bat运行应用:
PS ███> .\bin\main.bat
...
运行结束后在hilens_data_dir目录下生成了passenger_flow_result.mp4文件,可以打开查看:
可以看到,黄色线段包围的即客流统计的区域,区域外人使用灰色框标记,区域内的使用绿色框,画面左上角实时显示总的过线客流数量。
3. 小结
通过本教程,我们学习了一类客流统计应用——区域内客流统计,通常用于室外安防,或室内客流热力图,经过简单改造还可以实现区域入侵检测、人员在离岗检测等应用。
点击关注,第一时间了解华为云新鲜技术~