递归超时 唉
#include <iostream>
#include <string>
#include <vector>
using namespace std;
#define debug(x) cout<<#x<<": "<<x<<endl;
class Solution {
public:
string s,t;
void dispve(vector<int> ve){
for(auto i :ve){
cout<<i<<" ";
}
cout<<endl;
}
int numDistinct(string s, string t) {
this->s = s;
this->t = t;
return findw(0,0);
}
int findw(int spos,int tpos){
if(s.size()==0){
return 0;
}else if(tpos >= t.size()){
return 1;
}
int p = spos;
int ans = 0;
while( ( p = s.find( t[tpos],p ) )!=-1 ){
p++;
ans += findw(p,tpos+1);
}
return ans;
}
};
int main()
{
Solution Solution1;
string a = "adbdadeecadeadeccaeaabdabdbcdabddddabcaaadbabaaedeeddeaeebcdeabcaaaeeaeeabcddcebddebeebedaecccbdcbcedbdaeaedcdebeecdaaedaacadbdccabddaddacdddc";
string b = "bcddceeeebecbc";
cout<<Solution1.numDistinct(a,b)<<endl;
return 0;
}
dp
/* 设dp[i][j]表示s[0:i-1]的子序列中t[0:j-1]出现的次数,则
* 1.若s[i-1] == t[j-1] => dp[i][j] = dp[i-1][j-1] (用s[i-1]与t[j-1]配对)
* + dp[i-1][j](抛弃s[i-1],不用s[i-1]与t[j-1]配对)
* 2.若s[i-1] != t[j-1] => dp[i-1][j] (直接抛弃s[i-1],不用s[i-1]与t[j-1]配对)
*/
class Solution {
public:
int numDistinct(string s, string t) {
vector< vector<long long> >dp(s.size()+1,vector<long long>(t.size()+1, 0) );
for(int i = 0;i < s.size();i++){
dp[i][0] = 1;
}
//debug(dp.size());
for(int i=1;i<dp.size();i++){
for(int j=1;j<=i && j<=t.size();j++){
if(s[i-1] == t[j-1]){
dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
}else{
dp[i][j] = dp[i-1][j];
}
}
}
return dp[s.size()][t.size()];
}
};