基于Matlab GUI的PID研究

时间:2023-02-16 15:22:51

✅作者简介:热爱科研的算法开发者,Python、Matlab项目可交流、沟通、学习。

????个人主页:算法工程师的学习日志

前言:偷懒了一段时间,最近计划分享一些之前做过的项目,本期分享基于Matlab GUI的PID研究。

本例子中设计一个PID控制器来研究不同参数对输出结果的影响,PID控制器由比例单元 P、积分单元 I 和微分单元 D 组成。PID 控制器是一个在工业控制应用中常见的反馈回路部件,这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。和其他简单的控制运算不同,PID控制器可以根据历史数据和差别的出现率来调整输入值,这样可以使系统更加准确,更加稳定。可以通过数学的方法证明,在其他控制方法导致系统有稳定误差或过程反复的情况下,一个PID反馈回路却可以保持系统的稳定。在一个PID回路中,这个纠正值有三种算法,消除目前的误差,平均过去的误差,和透过误差的改变来预测将来的误差。

1、比例(P)系数的调节

比例系数P的调节范围一般是:0.1--100.

如果增益值取 0.1,PID 调节器输出变化为十分之一的偏差值。如果增益值取 100, PID 调节器输出变化为一百倍的偏差值。

可见该值越大,比例产生的增益作用越大。初调时,选小一些,然后慢慢调大,直到系统波动足够小,再调节积分或微分系数。过大的P值会导致系统不稳定,持续振荡;过小的P值又会使系统反应迟钝。合适的值应该使系统有足够的灵敏度但又不会反应过于灵敏,一定时间的迟缓要靠积分时间来调节。

2、积分(I)系数的调节

积分时间常数的定义是,偏差引起输出增长的时间。积分时间设为 1秒,则输出变化 100%所需时间为 1 秒。初调时要把积分时间设置长些,然后慢慢调小直到系统稳定为止。

3、微分(D)系数的调节

微分值是偏差值的变化率。例如,如果输入偏差值线性变化,则在调节器输出侧叠加一个恒定的调节量。大部分控制系统不需要调节微分时间。因为只有时间滞后的系统才需要附加这个参数。如果画蛇添足加上这个参数反而会使系统的控制受到影响。如果通过比例、积分参数的调节还是收不到理想的控制要求,就可以调节微分时间。初调时把这个系数设小,然后慢慢调大,直到系统稳定。


4、GUI设计和传递函数

基于Matlab GUI的PID研究


假定传递函数为 

基于Matlab GUI的PID研究

5、P调节

单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。实际应用中,比例度的大小应视具体情况而定,比例度太大,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太小,控制作用太强,容易导致系统的稳定性变差,引发振荡。

对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。

单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。工业生产中比例控制规律使用较为普遍。 

基于Matlab GUI的PID研究

基于Matlab GUI的PID研究


6、PI调节

比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控制作用。但是,不能最终消除余差的缺点限制了它的单独使用。克服余差的办法是在比例控制的基础上加上积分控制作用。

积分控制器的输出与输入偏差对时间的积分成正比。这里的“积分”指的是“积累”的意思。积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。所以,积分控制可以消除余差。积分控制规律又称无差控制规律。


基于Matlab GUI的PID研究

基于Matlab GUI的PID研究

基于Matlab GUI的PID研究


7、PD调节

比例积分控制对于时间滞后的被控对象使用不够理想。所谓“时间滞后”指的是:当被控对象受到扰动作用后,被控变量没有立即发生变化,而是有一个时间上的延迟,比如容量滞后,此时比例积分控制显得迟钝、不及时。为此,人们设想:能否根据偏差的变化趋势来做出相应的控制动作呢?犹如有经验的操作人员,即可根据偏差的大小来改变阀门的开度(比例作用),又可根据偏差变化的速度大小来预计将要出现的情况,提前进行过量控制,“防患于未然”。这就是具有“超前”控制作用的微分控制规律。微分控制器输出的大小取决于输入偏差变化的速度。微分控制作用的特点是:动作迅速,具有超前调节功能,可有效改善被控对象有较大时间滞后的控制品质;但是它不能消除余差,尤其是对于恒定偏差输入时,根本就没有控制作用。因此,不能单独使用微分控制规律。比例和微分作用结合,比单纯的比例作用更快。尤其是对容量滞后大的对象,可以减小动偏差的幅度,节省控制时间,显著改善控制质量。


基于Matlab GUI的PID研究

基于Matlab GUI的PID研究

基于Matlab GUI的PID研究


8、PID调节

最为理想的控制当属比例-积分-微分控制规律。它集三者之长:既有比例作用的及时迅速,又有积分作用的消除余差能力,还有微分作用的超前控制功能。

当偏差阶跃出现时,微分立即大幅度动作,抑制偏差的这种跃变;比例也同时起消除偏差的作用,使偏差幅度减小,由于比例作用是持久和起主要作用的控制规律,因此可使系统比较稳定;而积分作用慢慢把余差克服掉。只要三个作用的控制参数选择得当,便可充分发挥三种控制规律的优点,得到较为理想的控制效果。


基于Matlab GUI的PID研究


基于Matlab GUI的PID研究


9、GUI设计

界面设计了1个axes、4个text、3个edit和1个button,edit里面是输入的数值,点击执行按钮得到结果,

基于Matlab GUI的PID研究

执行代码如下

function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
kp = get(handles.edit1,'String'); % 获取P值
ki = get(handles.edit2,'String'); % 获取I值
kd = get(handles.edit3,'String'); % 获取d值
KP=str2double(kp); %因为edit默认都是字符,需要转为数值进行运算
KI=str2double(ki);
KD=str2double(kd);
s=tf('s');
PID=KP+KD*s+KI/s; % 获得pid传递函数
P = 1/(s^2 + 10*s + 20);
T = feedback(PID*P,1);
t = 0:0.01:2;
y=step(T,t); % 阶跃响应
plot(t,y); % 绘图