迁移学习(ADDA)《Adversarial Discriminative Domain Adaptation》【已复现迁移】

时间:2023-01-29 07:09:41

论文标题:Adversarial Discriminative Domain Adaptation
论文作者:Eric Tzeng, Judy Hoffman, Kate Saenko, Trevor Darrell
论文来源:CVPR 2017
论文地址:download 
论文代码:download
引用次数:3257

1 简介

  本文主要探讨的是:源域和目标域特征提取器共享参数的必要性。

  源域和目标域特征提取器共享参数的代表——DANN。

2 对抗域适应

  标准监督损失训练源数据:

    $\underset{M_{s}, C}{\text{min}} \quad \mathcal{L}_{\mathrm{cls}}\left(\mathbf{X}_{s}, Y_{t}\right)=  \mathbb{E}_{\left(\mathbf{x}_{s}, y_{s}\right) \sim\left(\mathbf{X}_{s}, Y_{t}\right)}-\sum\limits _{k=1}^{K} \mathbb{1}_{\left[k=y_{s}\right]} \log C\left(M_{s}\left(\mathbf{x}_{s}\right)\right)\quad\quad(1)$

  域对抗:首先使得域鉴别器分类准确,即最小化交叉熵损失 $\mathcal{L}_{\operatorname{adv}_{D}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, M_{s}, M_{t}\right)$:

    $\begin{array}{l}\mathcal{L}_{\text {adv }_{D}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, M_{s}, M_{t}\right)= -\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log D\left(M_{s}\left(\mathbf{x}_{s}\right)\right)\right] -\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(M_{t}\left(\mathbf{x}_{t}\right)\right)\right)\right]\end{array} \quad\quad(2)$

  其次,源映射和目标映射根据一个受约束的对抗性目标进行优化(使得域鉴别器损失最大)。

  域对抗技术的通用公式如下:

    $\begin{array}{l}\underset{D}{\text{min}}  & \mathcal{L}_{\mathrm{adv}_{D}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, M_{s}, M_{t}\right) \\\underset{M_{s}, M_{t}}{\text{min}}  & \mathcal{L}_{\mathrm{adv}_{M}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, D\right) \\\text { s.t. } & \psi\left(M_{s}, M_{t}\right)\end{array}\quad\quad(3)$

2.1 源域和目标域映射

  迁移学习(ADDA)《Adversarial Discriminative Domain Adaptation》【已复现迁移】

  归结为三个问题:

    • 选择生成式模型还是判别式模型?
    • 针对源域与目标域的映射是否共享参数?
    • 损失函数如何定义?

2.2 Adversarial losses

  回顾DANN 的训练方式:DANN 的梯度反转层优化映射,使鉴别器损失最大化

    $\mathcal{L}_{\text {adv }_{M}}=-\mathcal{L}_{\mathrm{adv}_{D}}\quad\quad(6)$

  这个目标可能有问题,因为在训练的早期,鉴别器快速收敛,导致梯度消失。

  当训练 GANs 时,而不是直接使用 minimax,通常是用带有倒置标签[10]的标准损失函数来训

  回顾 GAN :GAN将优化分为两个独立的目标,一个用于生成器,另一个用于鉴别器。训练生成器的时候,其中 $\mathcal{L}_{\mathrm{adv}_{D}}$ 保持不变,但 $\mathcal{L}_{\mathrm{adv}_{M}}$ 变成:

    $\mathcal{L}_{\mathrm{adv}_{M}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, D\right)=-\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log D\left(M_{t}\left(\mathbf{x}_{t}\right)\right)\right] \quad\quad(7)$

  Note:$\mathbf{x}_{t}$ 代表噪声数据,这里是使得噪声数据尽可能迷惑鉴别器。

adversarial_loss = torch.nn.BCELoss()  # 损失函数(二分类交叉熵损失)
generator = Generator()           #生成器
discriminator = Discriminator()   #鉴别器

optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))  # 生成器优化器
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))   # 鉴别器优化器

for epoch in range(opt.n_epochs):
    for i, (imgs, _) in enumerate(dataloader):
        # Adversarial ground truths
        valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)  #torch.Size([64, 1])
        fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)   #torch.Size([64, 1])
        real_imgs = Variable(imgs.type(Tensor))     #torch.Size([64, 1, 28, 28])   真实数据

        # ----------------------> 训练生成器  [生成器使用噪声数据,使得其尽可能为真,迷惑鉴别器]
        optimizer_G.zero_grad()
        z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))    #torch.Size([64, 100])
        gen_imgs = generator(z)        #torch.Size([64, 1, 28, 28])
        g_loss = adversarial_loss(discriminator(gen_imgs), valid)
        g_loss.backward()
        optimizer_G.step()

        # ----------------------> 训练鉴别器  [ 尽可能将真实数据和噪声数据区分开]
        optimizer_D.zero_grad()
        real_loss = adversarial_loss(discriminator(real_imgs), valid)
        fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
        d_loss = (real_loss + fake_loss) / 2
        d_loss.backward()
        optimizer_D.step()
GAN code

  本文采用的方法类似于  GAN 。

3 对抗性域适应

  与之前方法不同: 

  迁移学习(ADDA)《Adversarial Discriminative Domain Adaptation》【已复现迁移】

  本文方法:

  迁移学习(ADDA)《Adversarial Discriminative Domain Adaptation》【已复现迁移】

  首先:Pretrain ,使用源域训练一个分类器;[ 公式 9 第一个子公式]

  其次:Adversarial Adaption 

    • 使用源域和目标域数据,训练一个域鉴别器 Discriminator ,是的鉴别器尽可能区分源域和目标域数据 ;[ 公式 9 第二个子公式]  
    • 使用目标域数据,训练目标域特征提取器,尽可能使得域鉴别器区分不出目标域样本;[ 公式 9 第三个子公式]  

  最后:Testing,在目标域上做 Eval;

  ADDA对应于以下无约束优化:

    $\begin{array}{l}\underset{M_{s}, C}{\text{min}} \quad \mathcal{L}_{\mathrm{cls}}\left(\mathbf{X}_{s}, Y_{s}\right) &=&-\mathbb{E}_{\left(\mathbf{x}_{s}, y_{s}\right) \sim\left(\mathbf{X}_{s}, Y_{s}\right)} \sum_{k=1}^{K} \mathbb{1}_{\left[k=y_{s}\right]} \log C\left(M_{s}\left(\mathbf{x}_{s}\right)\right) \\\underset{D}{\text{min}}  \quad\mathcal{L}_{\text {adv }_{D}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, M_{s}, M_{t}\right)&=& -\mathbb{E}_{\mathbf{x}_{s} \sim \mathbf{X}_{s}}\left[\log D\left(M_{s}\left(\mathbf{x}_{s}\right)\right)\right] \text { - } \mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log \left(1-D\left(M_{t}\left(\mathbf{x}_{t}\right)\right)\right)\right] \\\underset{M_{t}}{\text{min}}  \quad \mathcal{L}_{\operatorname{adv}_{M}}\left(\mathbf{X}_{s}, \mathbf{X}_{t}, D\right)&=& -\mathbb{E}_{\mathbf{x}_{t} \sim \mathbf{X}_{t}}\left[\log D\left(M_{t}\left(\mathbf{x}_{t}\right)\right)\right] \\\end{array} \quad\quad(9)$

    tgt_encoder.train()
    discriminator.train()

    # setup criterion and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer_tgt = optim.Adam(tgt_encoder.parameters(),lr=params.c_learning_rate,betas=(params.beta1, params.beta2))
    optimizer_discriminator = optim.Adam(discriminator.parameters(),lr=params.d_learning_rate,betas=(params.beta1, params.beta2))
    len_data_loader = min(len(src_data_loader), len(tgt_data_loader))  #149

    for epoch in range(params.num_epochs):
        # zip source and target data pair
        data_zip = enumerate(zip(src_data_loader, tgt_data_loader))
        for step, ((images_src, _), (images_tgt, _)) in data_zip:
            # 2.1 训练域鉴别器,使得域鉴别器尽可能的准确
            images_src = make_variable(images_src)
            images_tgt = make_variable(images_tgt)
            discriminator.zero_grad()
            feat_src,feat_tgt = src_encoder(images_src) ,tgt_encoder(images_tgt)   # 源域特征提取  # 目标域特征提取
            feat_concat = torch.cat((feat_src, feat_tgt), 0)
            pred_concat = discriminator(feat_concat.detach())    # 域分类结果

            label_src = make_variable(torch.ones(feat_src.size(0)).long())   #假设源域的标签为 1
            label_tgt = make_variable(torch.zeros(feat_tgt.size(0)).long())  #假设目标域域的标签为 0
            label_concat = torch.cat((label_src, label_tgt), 0)

            loss_critic = criterion(pred_concat, label_concat)
            loss_critic.backward()
            optimizer_discriminator.step()     # 域鉴别器优化

            pred_cls = torch.squeeze(pred_concat.max(1)[1])
            acc = (pred_cls == label_concat).float().mean()

            # 2.2 train target encoder # 使得目标域特征生成器,尽可能使得域鉴别器区分不出源域和目标域样本
            optimizer_discriminator.zero_grad()
            optimizer_tgt.zero_grad()
            feat_tgt = tgt_encoder(images_tgt)
            pred_tgt = discriminator(feat_tgt)
            label_tgt = make_variable(torch.ones(feat_tgt.size(0)).long())   #假设目标域域的标签为 1(错误标签),使得域鉴别器鉴别错误
            loss_tgt = criterion(pred_tgt, label_tgt)
            loss_tgt.backward()
            optimizer_tgt.step()  # 目标域 encoder 优化
ADDA Code