Redis解决优惠券秒杀

时间:2022-10-31 13:53:02

虽然本文是针对黑马点评的优惠券秒杀业务的实现,但是是适用于各种抢购活动,保证线程安全。

摘要:本文先讲了抢购问题,指出其中会出现的多线程问题,提出解决方案采用观锁和乐观锁两种方式进行实现,然后发现在抢购过程中容易出现一人多单现象,为保证优惠券不会被【黄牛】抢到,因此我们在保证多线程安全的情况下实现了一人一单业务,最后指出本文的实现在集群情况下的不足之处。在本专栏的另一篇文章中提出集群或者分布式系统的解决方案


【前端页面】

Redis解决优惠券秒杀

 在代金券发放后,多个用户会进行优惠券抢购,在抢购时需要判断两点:

下单时需要判断两点:

  • 秒杀是否开始或结束,如果尚未开始或已经结束则无法下单 
  • 库存是否充足,不足则无法下单

下单核心逻辑分析:

当用户开始进行下单,我们应当去查询优惠卷信息,查询到优惠卷信息,判断是否满足秒杀条件

比如时间是否充足,如果时间充足,则进一步判断库存是否足够,如果两者都满足,则扣减库存,创建订单,然后返回订单id,如果有一个条件不满足则直接结束。

【逻辑图】

Redis解决优惠券秒杀

 【代码实现】

@Override
public Result seckillVoucher(Long voucherId) {
    // 1.查询优惠券
    SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
    // 2.判断秒杀是否开始
    if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
        // 尚未开始
        return Result.fail("秒杀尚未开始!");
    }
    // 3.判断秒杀是否已经结束
    if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
        // 尚未开始
        return Result.fail("秒杀已经结束!");
    }
    // 4.判断库存是否充足#######
    if (voucher.getStock() < 1) {
        // 库存不足
        return Result.fail("库存不足!");
    }
    //5,扣减库存
    boolean success = seckillVoucherService.update()
            .setSql("stock= stock -1")
            .eq("voucher_id", voucherId).update();
    if (!success) {
        //扣减库存
        return Result.fail("库存不足!");
    }
    //6.创建订单
    VoucherOrder voucherOrder = new VoucherOrder();
    // 6.1.订单id
    long orderId = redisIdWorker.nextId("order");
    voucherOrder.setId(orderId);
    // 6.2.用户id
    Long userId = UserHolder.getUser().getId();
    voucherOrder.setUserId(userId);
    // 6.3.代金券id
    voucherOrder.setVoucherId(voucherId);
    save(voucherOrder);

    return Result.ok(orderId);

}

【分析代码】

  • 从上述的逻辑图中我们可以知道,要扣减库存,并且要保存订单,因此需要事务业务
  • 在第4步判断库存是否充足处,会出现多线程问题。出现订单超卖现象

多线程问题

问题代码如下:

 if (voucher.getStock() < 1) {
        // 库存不足
        return Result.fail("库存不足!");
    }
    //5,扣减库存
    boolean success = seckillVoucherService.update()
            .setSql("stock= stock -1")
            .eq("voucher_id", voucherId).update();
    if (!success) {
        //扣减库存
        return Result.fail("库存不足!");
    }

Redis解决优惠券秒杀

 【采用锁】解决上述超卖问题。

悲观锁:

悲观锁可以实现对于数据的串行化执行,比如syn,和lock都是悲观锁的代表,同时,悲观锁中又可以再细分为公平锁,非公平锁,可重入锁,等等

乐观锁:

乐观锁:会有一个版本号,每次操作数据会对版本号+1,再提交回数据时,会去校验是否比之前的版本大1 ,如果大1 ,则进行操作成功,这套机制的核心逻辑在于,如果在操作过程中,版本号只比原来大1 ,那么就意味着操作过程中没有人对他进行过修改,他的操作就是安全的,如果不大1,则数据被修改过,当然乐观锁还有一些变种的处理方式比如cas

乐观锁的典型代表:就是cas,利用cas进行无锁化机制加锁,var5 是操作前读取的内存值,while中的var1+var2 是预估值,如果预估值 == 内存值,则代表中间没有被人修改过,此时就将新值去替换 内存值

其中do while 是为了在操作失败时,再次进行自旋操作,即把之前的逻辑再操作一次。

修改代码方案

我们的乐观锁保证stock大于0 即可,如果查询逻辑stock不能保证大于0,则会出现 success为false我们在后文进行判断即可。

boolean success = seckillVoucherService.update()
            .setSql("stock= stock -1")
            .eq("voucher_id", voucherId).update().gt("stock",0); //where id = ? and stock > 0
   if (!success) {
        //扣减库存
        return Result.fail("库存不足!");
    }

代码写到这里,我们就解决了多线程安全问题(优惠券超卖)


一人一单

但是我们在检查数据库数据时,我们发现一个人可以购买多个优惠券。

因此我们可以在抢购前,判断该用户是否已经购买过该优惠券,如果购买过则直接返回。

【逻辑图】红框内的是新增逻辑。

Redis解决优惠券秒杀


@Override
public Result seckillVoucher(Long voucherId) {
    // 1.查询优惠券
    SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
    // 2.判断秒杀是否开始
    if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
        // 尚未开始
        return Result.fail("秒杀尚未开始!");
    }
    // 3.判断秒杀是否已经结束
    if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
        // 尚未开始
        return Result.fail("秒杀已经结束!");
    }
    // 4.判断库存是否充足
    if (voucher.getStock() < 1) {
        // 库存不足
        return Result.fail("库存不足!");
    }
    // 5.一人一单逻辑
    // 5.1.用户id
    Long userId = UserHolder.getUser().getId();
    int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
    // 5.2.判断是否存在
    if (count > 0) {
        // 用户已经购买过了
        return Result.fail("用户已经购买过一次!");
    }

    //6,扣减库存
    boolean success = seckillVoucherService.update()
            .setSql("stock= stock -1")
            .eq("voucher_id", voucherId).update();
    if (!success) {
        //扣减库存
        return Result.fail("库存不足!");
    }
    //7.创建订单
    VoucherOrder voucherOrder = new VoucherOrder();
    // 7.1.订单id
    long orderId = redisIdWorker.nextId("order");
    voucherOrder.setId(orderId);

    voucherOrder.setUserId(userId);
    // 7.3.代金券id
    voucherOrder.setVoucherId(voucherId);
    save(voucherOrder);

    return Result.ok(orderId);

}

 【分析代码】---仍然会出现多线程问题。

        存在问题:现在的问题还是和之前一样,并发过来,查询数据库,都不存在订单,所以我们还是需要加锁,但是乐观锁比较适合更新数据,而现在是插入数据,所以我们需要使用悲观锁操作

【注意事项】

  • 事务应该包含在锁的内部。
  • 锁的粒度,锁的对象应该是用户级别的,而不是整个抢购优惠券级别的,因此我们不会直接将synchronized加到方法上。
  • 锁对象的细节处理,使用userId.toString().intern()保证对象唯一。
  • 获取代理对象调用切入事务
package com.hmdp.service.impl;

import com.hmdp.dto.Result;
import com.hmdp.entity.SeckillVoucher;
import com.hmdp.entity.VoucherOrder;
import com.hmdp.mapper.VoucherOrderMapper;
import com.hmdp.service.ISeckillVoucherService;
import com.hmdp.service.IVoucherOrderService;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import com.hmdp.utils.RedisWorker;
import com.hmdp.utils.UserHolder;
import org.springframework.aop.framework.AopContext;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import javax.annotation.Resource;
import java.time.LocalDateTime;

/**
 * <p>
 * 服务实现类
 * </p>
 *
 * @author msf
 * @since 2022-10-29
 */
@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {

    @Resource
    private ISeckillVoucherService seckillVoucherService;

    @Resource
    private RedisWorker redisWorker;


    @Override

    public Result seckillVoucher(Long voucherId) {
        // 1. 查询优惠券信息
        SeckillVoucher voucherOrder = seckillVoucherService.getById(voucherId);
        // 2.判断秒杀是否开始
        if (voucherOrder.getBeginTime().isAfter(LocalDateTime.now())) {
            return Result.fail("抢购尚未开始");
        }
        if (voucherOrder.getEndTime().isBefore(LocalDateTime.now())) {
            return Result.fail("抢购已经结束");
        }
        // 3.判断库存是否充足
        if (voucherOrder.getStock() < 1) {
            return Result.fail("您来晚了,票已被抢完");
        }
        Long userId = UserHolder.getUser().getId();
        // 事务应该在synchronized里面
        synchronized (userId.toString().intern()) {
            IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
            return proxy.createVoucherOrder(voucherId,userId);
        }
    }


    @Transactional
    public Result createVoucherOrder(Long voucherId,Long userId) {
            // 4. 一人一单逻辑
            // 4.1 根据优惠券id和用户id查询订单
            Integer count = query().eq("user_id", userId)
                    .eq("voucher_id", voucherId).count();
            // 4.2 订单存在,直接返回
            if (count > 0) {
                return Result.fail("用户已经购买一次");
            }

            // 5. 扣减库存
            boolean success = seckillVoucherService.update()
                    .setSql("stock = stock - 1")
                    .gt("stock", 0)
                    .eq("voucher_id", voucherId).update();
            if (!success) {
                return Result.fail("库存不足");
            }

            // 6.创建订单
            VoucherOrder order = new VoucherOrder();
            // 6.1 设置id
            order.setId(redisWorker.nextId("order"));
            // 6.2 设置订单id
            order.setVoucherId(voucherId);
            // 6.3 设置用户id
            order.setUserId(userId);
            save(order);

            // 7. 返回订单id
            return Result.ok(order);

    }
}

展望

虽然我们利用锁和事务解决单体系统下的秒杀功能,但是现在的业务一般是在集群和分布式系统协作完成,因此我们在测试系统在集群部署时,仍会出现一人多单问题,稍后我们将更新文章,分析问题出现原因,并利用分布式锁的方式解决该问题。