题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5434
Peace small elephant
Accepts: 38
Submissions: 108
Time Limit: 10000/5000 MS (Java/Others)
Memory Limit: 65536/65536 K (Java/Others)
问题描述
小明很喜欢国际象棋,尤其喜欢国际象棋里面的大象(只要无阻挡能够斜着走任意格),但是他觉得国际象棋里的大象太凶残了,于是他想到了小象,
小象就没有大象那么凶残,它的攻击范围是它当前格子直角所斜对的格子。现在小明要在棋盘上放很多个小象,有趣的是,当两个小象所在格子有公共边时,
它们将合体变成合体象,多个小象满足条件也会合体,合体象的攻击范围也是它所覆盖格子区域直角所斜对的格子,现在要求任何一个象的攻击范围上是空的(即不摆放棋子),
小明的棋盘很特殊,有m*nm∗n个格子,求满足条件的摆放的方案数,由于方案数太大,需要对10000000071000000007取模。
下面给出几种形状下的象的攻击范围图,叉号表示攻击范围。
输入描述
输入有多组数据(最多55组),每组数据有两个整数n,mn,m含义如题目描述。
1 \leq m \leq 7,1 \leq n \leq 10000000001≤m≤7,1≤n≤1000000000
输出描述
每组数据对应输出一行包含一个整数,表示满足条件的摆放的方案数。
输入样例
1 1
2 3
输出样例
2
50
题解:
状压dp+矩阵快速幂。
由于m很小,我们考虑将每一列m行的状态压缩成一行,这一行对应的状态总数就是2^m种(m=7时,即:0000000~1111111)。
接下来我们求一个矩阵mat[i][j],代表状态i和状态j是否冲突(比如说0000000和1111111不冲突,而1000000和0100000则冲突)。
如果坐标(i,j),(i+1,j+1)存在小象,那么必须保证(i+1,j),(i,j+1)两个位置至少有一个棋子,按照这个规则,就能提前得到状态转移矩阵mat了。
然后我们要一列一列的往棋盘上放棋子了(注意这时候棋盘已经状压成1*n了,是线性结构,而不是二维结构),由于我们已经得到转移矩阵mat[1<<m][1<<m]了,初始向量vec[1<<m]为全1(因为第一列所有的(1<<m)种状态都不会发生冲突,所以为全1)。我们的任务就是要求:
mat^(n-1)*vec (mat^(n-1)表示做n-1次的矩阵乘)
由于n非常大,所以我们需要用矩阵快速幂来求mat^(n-1);
总的时间复杂度为 o( (2^m)*(2^m)*(2^m)*(logn) )=o(3e6)
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; const int maxn = ;
const int mod = ; typedef long long LL; struct Matrix {
int n, m;
int val[maxn][maxn];
Matrix(int n,int m) :n(n),m(m) {}
Matrix() {}
void init(int n, int m) { this->n = n; this->m = m; }
//把向量看作是n*1的矩阵,所以不用考虑矩阵*向量的情况了。
friend Matrix operator * (const Matrix& mat1, const Matrix& mat2) {
Matrix ret(mat1.n, mat2.m);
for (int i = ; i < ret.n; i++) {
for (int j = ; j < ret.m; j++) {
ret.val[i][j] = ;
for (int k = ; k < mat1.m; k++) {
ret.val[i][j] += (LL)mat1.val[i][k] * mat2.val[k][j]%mod;
ret.val[i][j] %= mod;
}
}
}
return ret;
}
}; //矩阵快速幂
void power(Matrix& mat, int n, Matrix& ans) {
while (n > ) {
if (n % ) ans = mat*ans;
mat = mat*mat;
n /= ;
}
} int _n, m; //判断状态s1和状态s2是否冲突。
bool isOk(int s1, int s2) {
for (int i = ; i<m; i++) {
if ((s1&( << i)) && !(s2&( << i))) {
int j;
j = i - ;
if (j >= ) {
if ((s2&( << j)) && !(s1&( << j))) return false;
}
j = i + ;
if (j<m) {
if ((s2&( << j)) && !(s1&( << j))) return false;
}
}
}
return true;
} Matrix mat, ans; void init() {
mat.init( << m, << m);
for (int i = ; i<mat.n; i++) {
for (int j = ; j<mat.m; j++) {
if (isOk(i, j)) mat.val[i][j] = ;
else mat.val[i][j] = ;
}
}
ans.init( << m, );
for (int i = ; i < ans.n; i++) ans.val[i][] = ;
} int main() {
while (scanf("%d%d", &_n, &m) == && _n) {
init();
power(mat, _n - , ans);
int res = ;
for (int i = ; i < ans.n; i++) {
res += ans.val[i][];
res %= mod;
}
printf("%d\n", res);
}
return ;
}