【bzoj1009】[HNOI2008]GT考试

时间:2021-01-10 23:39:51

1009: [HNOI2008]GT考试

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 3018  Solved: 1856
[Submit][Status][Discuss]

Description

  阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
0

Input

  第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000

Output

  阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81
 
 
【题解】
动态规划啊,但数据这么大怎么想得到是动态规划呢,太弱了......
f[i][j]表示准考证前i位中后j位为不吉利的数字的前j位。
转移方程:
     【bzoj1009】[HNOI2008]GT考试
 

【bzoj1009】[HNOI2008]GT考试

因此就可以使用矩阵乘法加速了!

a[k][j]表示f[i-1][k]转为f[i][j]的方法数,这步可以用KMP解决。

ans+=f[0][j] (j=0;j<m;++j);

——转自怡红公子
这题看了一个晚上的题解,然而关于a矩阵的求法还不是太懂,希望大神指教。
===========================================
2016.11.1更新:
A掉2道 AC自动机+矩阵乘法后,这道题就彻底理解了。
代码中的b矩阵表示转移的路径数,然后自乘n次,就相当于是转移n次的路径数。
这个和邻接矩阵的自乘原理是一样的。(floyd)
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<algorithm>
using namespace std;
int n,m,mod,p[],a[][],b[][];
char ch[];
inline int read()
{
int x=,f=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getchar();}
while(isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
void mul(int a[][],int b[][],int ans[][])
{
int temp[][];
for(int i=;i<m;i++)
for(int j=;j<m;j++)
{
temp[i][j]=;
for(int k=;k<m;k++)
temp[i][j]=(temp[i][j]+a[i][k]*b[k][j])%mod;
}
for(int i=;i<m;i++)
for(int j=;j<m;j++)
ans[i][j]=temp[i][j];
}
int main()
{
n=read(); m=read(); mod=read();
scanf("%s",ch+);
int j=;
for(int i=;i<=m;i++)
{
while(j>&&ch[j+]!=ch[i]) j=p[j];
if(ch[j+]==ch[i]) j++;
p[i]=j;
}
for(int i=;i<m;i++)
for(int j=;j<=;j++)
{
int t=i;
while(t>&&ch[t+]-''!=j) t=p[t];
if(ch[t+]-''==j) t++;
if(t!=m) b[t][i]=(b[t][i]+)%mod;
}
for(int i=;i<m;i++) a[i][i]=;
while(n)
{
if(n&) mul(a,b,a);
mul(b,b,b);
n/=;
}
int sum=;
for(int i=;i<m;i++)
sum=(sum+a[i][])%mod;
printf("%d",sum);
return ;
}