一个人爬楼梯,一步可以迈一级,二级,如果楼梯有N级,要求编写程序,求总共有多少种走法。
简单的一个递归思想,只要爬到了N-1层,或者爬到N-2层,则认定下一步只有一种走法。所以再去找寻N-1、N-2的前两步。动态规划方程为:f(n) = f(n-1) +f(n-2)
方案1:
def climb_2(n): # 速度非常慢 if n not in [1, 2]: return climb_2(n - 1) + climb_2(n - 2) else: return n
但是运行下来,会发现,climb_2(3) = 3 这个值早在最开始已经被计算出来了,但是后面的climb_2(4)以及后面所有的递归,都会再去重新计算一下这个取值。当嵌套复杂起来,做了非常多的重复工作,速度很差。
方案2:
dict_t = {1:1, 2:2} def climb_1(n): global dict_t if n not in dict_t.keys(): dict_t[n - 1] = climb_1(n - 1) dict_t[n - 2] = climb_1(n - 2) dict_t[n] = dict_t[n - 1] + dict_t[n - 2] return dict_t[n]
这样虽然也是递归嵌套,但是有了全局的dict_t的字典做存储,不会再傻乎乎将climb_2(3) 重新计算,算是一定层面的优化了。但是呢有个缺点:必须依赖函数外的nonlocal或者global变量。
方案3:
@functools.lru_cache(3) def climb_3(n): if n not in [1, 2]: return climb_3(n - 1) + climb_3(n - 2) else: return n
此种方案也是最近学习functools才发现的,有个lru_cache 可以缓存函数的返回值,思路也同方案2,但是更加优雅、干练,而且也摆脱了nonlocal变量的依赖。但是这里还有个问题没弄明白。cache的大小为啥3就够快,但是2就不够。此处留个问号?
方案4:
def climb_4(n): def inner(): (a, b) = (1, 2) yield a yield b while 1: yield (a + b) (a, b) = (b, a + b) bo = inner() for _ in range(n): s = next(bo) return s
方案4用到了yield关键词(最近才学明白),也即生成器。yield可以看成是个特殊的return,只是当再次进入这个方法时,会从上会的yield存档处继续。会有变量保存的效果。
受到这层启发后,编写了上面这个方案,n为1,n为2,设了两道关卡,yield出来个a,yield出来个b。。过了1,2后,就进入了死循环阶段。将a + b生成出去,当再次进入函数时,再将a与b重新继续赋值。整体看起来很不错的一种方案。