I am trying to launch multiple processes to parallelize certain tasks and want one global variable to be decremented by 1 each time each process executes a method X().
我试图启动多个进程来并行化某些任务,并希望每个进程执行一个方法X()时,一个全局变量减1。
I tried to look at the multiprocessing.Value method but not sure if that's the only way to do it. Could someone provide some code snippets to do this ?
我试着看看multiprocessing.Value方法,但不确定这是否是唯一的方法。有人可以提供一些代码片段来做到这一点吗?
from multiprocessing import Pool, Process
def X(list):
global temp
print list
temp = 10
temp -= 1
return temp
list = ['a','b','c']
pool = Pool(processes=5)
pool.map(X, list)
With the use of global variable, each process gets its own copy of the global variable which doesn't solve the purpose of sharing it's value. I believe, the need is to have sort of a shared memory system but I am not sure how to do it. Thanks
通过使用全局变量,每个进程都获得自己的全局变量副本,但这并不能解决共享它的价值的问题。我相信,需要有一种共享内存系统,但我不知道该怎么做。谢谢
1 个解决方案
#1
1
Move counter
variable into the main process i.e., avoid sharing the variable between processes:
将计数器变量移动到主进程中,即避免在进程之间共享变量:
for result in pool.imap_unordered(func, args):
counter -= 1
counter
is decremented as soon as the corresponding result (func(arg)
) becomes available. Here's a complete code example:
一旦相应的结果(func(arg))变得可用,计数器就会递减。这是一个完整的代码示例:
#!/usr/bin/env python
import random
import time
import multiprocessing
def func(arg):
time.sleep(random.random())
return arg*10
def main():
counter = 10
args = "abc"
pool = multiprocessing.Pool()
for result in pool.imap_unordered(func, args):
counter -= 1
print("counter=%d, result=%r" % (counter, result))
if __name__ == "__main__":
main()
An alternative is to pass multiprocessing.Value()
object to each worker process (use initialize
, initargs
Pool()
's parameters).
另一种方法是将multiprocessing.Value()对象传递给每个工作进程(使用initialize,initargs Pool()的参数)。
#1
1
Move counter
variable into the main process i.e., avoid sharing the variable between processes:
将计数器变量移动到主进程中,即避免在进程之间共享变量:
for result in pool.imap_unordered(func, args):
counter -= 1
counter
is decremented as soon as the corresponding result (func(arg)
) becomes available. Here's a complete code example:
一旦相应的结果(func(arg))变得可用,计数器就会递减。这是一个完整的代码示例:
#!/usr/bin/env python
import random
import time
import multiprocessing
def func(arg):
time.sleep(random.random())
return arg*10
def main():
counter = 10
args = "abc"
pool = multiprocessing.Pool()
for result in pool.imap_unordered(func, args):
counter -= 1
print("counter=%d, result=%r" % (counter, result))
if __name__ == "__main__":
main()
An alternative is to pass multiprocessing.Value()
object to each worker process (use initialize
, initargs
Pool()
's parameters).
另一种方法是将multiprocessing.Value()对象传递给每个工作进程(使用initialize,initargs Pool()的参数)。