How do I convert this dataframe
如何转换这个dataframe
location value 0 (Richmond, Virginia, nan, USA) 100 1 (New York City, New York, nan, USA) 200
to this:
:
city state region country value 0 Richmond Virginia nan USA 100 1 New York City New York nan USA 200
Note that the location
column in the first dataframe contains tuples. I want to create four columns out of the location
column.
请注意,第一个dataframe中的location列包含元组。我想从location列中创建4列。
2 个解决方案
#1
8
new_col_list = ['city','state','regions','country']
for n,col in enumerate(new_col_list):
df[col] = df['location'].apply(lambda location: location[n])
df = df.drop('location',axis=1)
#2
5
If you return a Series of the (split) location, you can merge (join
to merge on index) the resulting DF directly with your value column.
如果返回一系列(拆分)位置,则可以直接将结果DF与值列合并(在索引上合并到合并)。
addr = ['city', 'state', 'region', 'country']
df[['value']].join(df.location.apply(lambda loc: Series(loc, index=addr)))
value city state region country
0 100 Richmond Virginia NaN USA
1 200 New York City New York NaN USA
#1
8
new_col_list = ['city','state','regions','country']
for n,col in enumerate(new_col_list):
df[col] = df['location'].apply(lambda location: location[n])
df = df.drop('location',axis=1)
#2
5
If you return a Series of the (split) location, you can merge (join
to merge on index) the resulting DF directly with your value column.
如果返回一系列(拆分)位置,则可以直接将结果DF与值列合并(在索引上合并到合并)。
addr = ['city', 'state', 'region', 'country']
df[['value']].join(df.location.apply(lambda loc: Series(loc, index=addr)))
value city state region country
0 100 Richmond Virginia NaN USA
1 200 New York City New York NaN USA