从零开始学Kotlin基础篇系列文章
与 Java 一样,Kotlin 也提供泛型,为类型安全提供保证,消除类型强转的烦恼。
泛型类的基本使用
- 泛型,即 "参数化类型",将类型参数化,可以用在类,接口,方法上
class DemoClass<T>(date: T) {//date是任意类型的,避免强转
var todayDate=date
}
- 创建类的实例时我们需要指定类型参数
//指定泛型date为String,三种创建方法
val demo1: DemoClass<String> = DemoClass<String>("2018-01-27")
val demo2: DemoClass<String> = DemoClass("2018-01-27")
val demo3 = DemoClass("2018-01-27")
//指定泛型date为Int,三种创建方法
val demo1: DemoClass<Int> = DemoClass<Int>(20180127)
val demo2: DemoClass<Int> = DemoClass(20180127)
val demo3 = DemoClass(20180127)
泛型方法的基本使用
- Kotlin 泛型函数的声明与 Java 相同,类型参数要放在函数名的前面:
fun <T> showMsg(msg: T) {
}
- 在调用泛型函数时,如果可以推断出类型参数,可以省略泛型参数
val msg = showMsg("泛型的使用")
val msg1 = showMsg(200)
val msg2 = showMsg<String>("指定返回类型")
- 泛型结合when控制语句实例
fun <T> showPrint(printMsg: T) {
when (printMsg) {
is Int -> println("printMsg是Int类型:$printMsg")
is String -> println("printMsg是String类型:$printMsg")
else -> println("printMsg类型不是Int也不是String:$printMsg")
}
}
fun main() {
showMsg(100)
showMsg("2017-01-27")
showMsg(true)
}
泛型约束
- 对于给定的参数, 所允许使用的类型, 可以通过泛型约束(generic constraint) 来限制。冒号之后指定的类型就是类型参数的上界(upper bound), 对于类型参数 T , 只允许使用 Comparable的子类型
fun <T : Comparable<T>> sort(list: List<T>) {//上界约束
}
fun main() {
sort(listOf(1, 2, 3))//正确
sort(listOf("1", "2", "3"))//正确
sort(listOf(HashMap<Int,String>))//错误, HashMap<Int, String> 不是 Comparable<HashMap<Int, String>> 的子类型
}
- 默认的上界是 Any?,对于多个上界约束条件,可以用 where 子句:
//多个约束,T有多个上限 , where T:类型,T:类型
fun <T> getBetterBig(list: Array<T>, threhold: T): List<T> where T : Number, T : Comparable<T> {
return list.filter { it >= threhold }.sorted()
}
泛型协变
- Kotlin 中没有通配符类型,它有两个其他的东西:声明处型变(declaration-site variance)与类型投影(type projections)。
- 声明处的类型变异使用协变注解修饰符:in、out,消费者 in, 生产者 out。
- out 修饰符;这里比较难理解,先举一个例子
//创建两个类,继承关系
open class Person(name: String)
open class Student(name: String) : Person("PersonA")
class Teacher(name: String) : Student("StudentA")
fun main() {
var person = Person("PersonA")
var personList: ArrayList<Person> = arrayListOf(person)
var student = Student("StudentA")
var studentList: ArrayList<Student> = arrayListOf(student)
var teacher = Teacher("TeacherA")
var teacherList: ArrayList<Teacher> = arrayListOf(teacher)
for (name in personList.withIndex()) {
println("name is $name")//输出:name is PersonA
}
for (name in studentList.withIndex()) {
println("name is $name")//输出:name is StudentA
}
for (name in teacherList.withIndex()) {
println("name is $name")//输出:name is TeacherA
}
person = student//正确,因为 Student 是 Person 的子类
/*
编译报错,类型不匹配:Required ArrayList<Person> Found ArrayList<Student>
这是因为,虽然 Student 是 Person 的子类,但是 ArrayList<Student> 并不是 ArrayList<Person> 的子类
*/
personList = studentList//错误
}
- 对于上面的编译错误可以使用 协变注解修饰符 out 进行类型修饰。 协变类型参数 out 相当于java中的ArrayList<? extends C>;协变类型参数只能用作输出,可以作为返回值类型,但是无法作为入参的类型
fun main() {
var person = Person("PersonA")
var personList: ArrayList<out Person> = arrayListOf(person)//使用 out 修饰符,限定类型上限
var student = Student("StudentA")
var studentList: ArrayList<Student> = arrayListOf(student)
personList = studentList//编译正确,这是因为 ArrayList<out Person> 限定了子类的上限为 Person
for (name in personList.withIndex()) {
println("name is $name")//输出:name is StudentA
}
}
- in 修饰符,同样先看一个例子
fun main() {
var person = Person("PersonA")
var personList: ArrayList<Person> = arrayListOf(person)
var student = Student("StudentA")
var studentList: ArrayList<Student> = arrayListOf(student)
var teacher = Teacher("TeacherA")
var teacherList: ArrayList<Teacher> = arrayListOf(teacher)
/*
以下两种均报类型不匹配错误,
*/
teacherList = personList//Required ArrayList<Teacher> Found ArrayList<Person>
teacherList = studentList//Required ArrayList<Teacher> Found ArrayList<Student>
}
- 对于上面的编译错误可以使用 协变注解修饰符 in 进行类型修饰。 相当于 Java 中的 ArrayList<? super Class> ;in 修饰符使得一个类型参数逆变,逆变类型参数只能用作输入,可以作为入参的类型,但是无法作为返回值的类型;
fun main3() {
val person = Person("PersonA")
val personList: ArrayList<Person> = arrayListOf(person)
val student = Student("StudentA")
val studentList: ArrayList<Student> = arrayListOf(student)
val teacher = Teacher("TeacherA")
var teacherList: ArrayList<in Teacher> = arrayListOf(teacher)// <in Teacher> 就是允许 Teacher 的超类类型下限为 Teacher
for (name in teacherList.withIndex()) {
println("name is $name")//输出:name is TeacherA
}
teacherList = personList
for (name in teacherList.withIndex()) {
println("name is $name")//输出:name is PersonA
}
teacherList = studentList
for (name in teacherList.withIndex()) {
println("name is $name")//输出:name is StudentA
}
}
- 再来理解消费者 in 只能用作输入和 生产者 out 只能用作输出的概念:
不使用 in 和 out 修饰时
open class Person(name: String) {
var myName = "Siberiadante"
}
class Student(name: String) : Person("PersonA")
fun main() {
val person = Person("PersonA")
var personList: ArrayList<Person> = arrayListOf(person)
val student = Student("StudentA")
var studentList: ArrayList<Student> = arrayListOf(student)
personList.add(student)//set 设置值,编译通过
personList[0].myName// get 取值,编译通过
}
作为 < out T>的类型,由于所有类型均为T的下限,无法得知其确定的类型,所以不能使用 set 方法,只能 get
fun main() {
val person = Person("PersonA")
var personList: ArrayList<out Person> = arrayListOf(person)
val student = Student("StudentA")
var studentList: ArrayList<Student> = arrayListOf(student)
/*
prohibits(禁止) use of public open fun add(element:E) !
*/
personList.add(student)// set 设置值,编译不通过
personList[0].myName// get 取值,编译通过
}
作为 < in T>的类型
fun main() {
val person = Person("PersonA")
var personList: ArrayList<in Person> = arrayListOf(person)
val student = Student("StudentA")
var studentList: ArrayList<Student> = arrayListOf(student)
personList.add(student)//set 设置值,编译通过
/*
Unresolved reference : name,
*/
personList[0].myName// get 取值,编译不通过
}
星投射
- 在我们不知道类型参数的任何信息的情况下, 仍然希望能够安全地使用它时,就可以使用类型投射
var list:ArrayList<*> = arrayListOf(100)
fun main() {
val person = Person("PersonA")
val student = Student("StudentA")
val studentList: ArrayList<Student> = arrayListOf(student)
/*
相当于 var personList: ArrayList<out Person> = studentList
*/
var personList: ArrayList<*> = studentList
}
fun main9() {
val person = Person("PersonA")
val personList: ArrayList< Person> =arrayListOf(person)
val student = Student("StudentA")
/*
相当于 val studentList:ArrayList<in Student> =personList
*/
val studentList:ArrayList<*> =personList
}