# 返回函数函数作为返回值
# 高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。
# 我们来实现一个可变参数的求和。通常情况下,求和的函数是这样定义的:
def calc_sum(*args):
ax = 0
for n in args:
ax = ax + n
return ax
# 但是,如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数:
def lazy_sum(*args):
def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum
# 当我们调用lazy_sum()时,返回的并不是求和结果,而是求和函数:
f = lazy_sum(1, 3, 5, 7, 9)
print(f)
# 调用函数f时,才真正计算求和的结果:
print(f())
# 在这个例子中,我们在函数lazy_sum中又定义了函数sum,并且,内部函数sum可以引用外部函数lazy_sum的参数和局部变量,
# 当lazy_sum返回函数sum时,相关参数和变量都保存在返回的函数中,这种称为“闭包(Closure)”的程序结构拥有极大的威力。
# 请再注意一点,当我们调用lazy_sum()时,每次调用都会返回一个新的函数,即使传入相同的参数:
f1 = lazy_sum(1, 3, 5, 7, 9)
f2 = lazy_sum(1, 3, 5, 7, 9)
print(f1==f2)
# 闭包
# 注意到返回的函数在其定义内部引用了局部变量args,
# 所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用,所以,闭包用起来简单,实现起来可不容易。
# 另一个需要注意的问题是,返回的函数并没有立刻执行,而是直到调用了f()才执行。我们来看一个例子:
def count():
fs = []
for i in range(1, 4):
def f():
return i*i
fs.append(f)
return fs
f1, f2, f3 = count()
# 在上面的例子中,每次循环,都创建了一个新的函数,然后,把创建的3个函数都返回了。
# 你可能认为调用f1(),f2()和f3()结果应该是1,4,9,但实际结果是:
# 全部都是9!原因就在于返回的函数引用了变量i,但它并非立刻执行。等到3个函数都返回时,它们所引用的变量i已经变成了3,因此最终结果为9。
# 返回闭包时牢记一点:返回函数不要引用任何循环变量,或者后续会发生变化的变量。
# 如果一定要引用循环变量怎么办?方法是再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变:
def count():
def f(j):
def g():
return j*j
return g
fs = []
for i in range(1, 4):
fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f()
return fs
# 匿名函数
# 当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便。
# 在Python中,对匿名函数提供了有限支持。还是以map()函数为例,计算f(x)=x2时,除了定义一个f(x)的函数外,还可以直接传入匿名函数:
print(list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9])))
# 通过对比可以看出,匿名函数lambda x: x * x实际上就是:
def f(x):
return x * x
# 关键字lambda表示匿名函数,冒号前面的x表示函数参数。
# 匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。
# 用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:
f = lambda x: x * x
print(f)
print(f(5))
# 同样,也可以把匿名函数作为返回值返回,比如:
def build(x, y):
return lambda: x * x + y * y
# 装饰器
# 由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。
def now():
print('2015-3-25')
f = now
print(f())
# 函数对象有一个__name__属性,可以拿到函数的名字:
print(now.__name__)
print(f.__name__)
# 现在,假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
# 本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:
def log(func):
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
# 观察上面的log,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:
@log
def now():
print('2015-3-25')
# 调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:
now();
# 把@log放到now()函数的定义处,相当于执行了语句:now = log(now)
# 由于log()是一个decorator,返回一个函数,所以,原来的now()函数仍然存在,只是现在同名的now变量指向了新的函数,于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。
# wrapper()函数的参数定义是(*args, **kw),因此,wrapper()函数可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再紧接着调用原始函数。
# 如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:
def log(text):
def decorator(func):
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
@log('execute')
def now():
print('2015-3-25')
now()
# 和两层嵌套的decorator相比,3层嵌套的效果是这样的:now = log('execute')(now)
# 我们来剖析上面的语句,首先执行log('execute'),返回的是decorator函数,再调用返回的函数,参数是now函数,返回值最终是wrapper函数。
# 以上两种decorator的定义都没有问题,但还差最后一步。因为我们讲了函数也是对象,它有__name__等属性,但你去看经过decorator装饰之后的函数,它们的__name__已经从原来的'now'变成了'wrapper':
print(now.__name__)
# 因为返回的那个wrapper()函数名字就是'wrapper',所以,需要把原始函数的__name__等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。
# 不需要编写wrapper.__name__ = func.__name__这样的代码,Python内置的functools.wraps就是干这个事的,所以,一个完整的decorator的写法如下:
import functools
def log(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
# 或者针对带参数的decorator:
import functools
def log(text):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
# 偏函数
# Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function)。要注意,这里的偏函数和数学意义上的偏函数不一样。
# 在介绍函数参数的时候,我们讲到,通过设定参数的默认值,可以降低函数调用的难度。而偏函数也可以做到这一点。举例如下:
# int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换:
print(int('12345'))
# 但int()函数还提供额外的base参数,默认值为10。如果传入base参数,就可以做N进制的转换:
print(int('12345', base=8))
print(int('12345', 16))
# 假设要转换大量的二进制字符串,每次都传入int(x, base=2)非常麻烦,于是,我们想到,可以定义一个int2()的函数,默认把base=2传进去:
def int2(x, base=2):
return int(x, base)
# 这样,我们转换二进制就非常方便了:
print(int2('1000000'))
print(int2('1010101'))
# functools.partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2:
import functools
int2 = functools.partial(int, base=2)
print(int2('1000000'))
print(int2('1010101'))
# 所以,简单总结functools.partial的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。
# 注意到上面的新的int2函数,仅仅是把base参数重新设定默认值为2,但也可以在函数调用时传入其他值:
print(int2('1000000', base=10))
# 最后,创建偏函数时,实际上可以接收函数对象、*args和**kw这3个参数,当传入:
int2 = functools.partial(int, base=2)
# 实际上固定了int()函数的关键字参数base,也就是:
int2('10010')
# 相当于:
kw = { 'base': 2 }
int('10010', **kw)
# 当传入:
max2 = functools.partial(max, 10)
# 实际上会把10作为*args的一部分自动加到左边,也就是:
max2(5, 6, 7)
# 相当于:
args = (10, 5, 6, 7)
print(max(*args))
# 当函数的参数个数太多,需要简化时,使用functools.partial可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单。