http://cogs.pro:8080/cogs/problem/problem.php?pid=1763
二分答案x
把区间内>=x的数设为1,<x的数设为-1
左端点在[a,b]之间,右端点在[c,d]之间的子序列中,若中位数>=x,
那么 [b+1,c-1]的区间和+[a,b]的最大右子段和+[c,d]的最大左子段和>=0
查询可以用线段树
多组询问,不能每一次二分都重设1和-1
所以用主席树
其中第i棵线段树表示<=i的都被设成了-1
因为主席树是线段树的前缀和,所以一次修改只需要改第i棵线段树,就可以得到<=i的都被设成-1的线段树
#include<cstdio>
#include<iostream>
#include<algorithm> #define N 20001 using namespace std; int n; pair<int,int>a[N]; int cnt;
int root[N],lc[N*],rc[N*]; int q[]; struct node
{
int sum,lmax,rmax; node operator + (node p)
{
node c;
c.sum=sum+p.sum;
c.lmax=max(lmax,sum+p.lmax);
c.rmax=max(p.rmax,rmax+p.sum);
return c;
} }e[N*],zero; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void build(int &k,int l,int r)
{
k=++cnt;
if(l==r)
{
e[k].sum=e[k].lmax=e[k].rmax=;
return;
}
int mid=l+r>>;
build(lc[k],l,mid);
build(rc[k],mid+,r);
e[k]=e[lc[k]]+e[rc[k]];
} void change(int pre,int &k,int l,int r,int pos)
{
k=++cnt;
if(l==r)
{
e[k].sum=e[k].lmax=e[k].rmax=-;
return;
}
int mid=l+r>>;
if(pos<=mid)
{
rc[k]=rc[pre];
change(lc[pre],lc[k],l,mid,pos);
}
else
{
lc[k]=lc[pre];
change(rc[pre],rc[k],mid+,r,pos);
}
e[k]=e[lc[k]]+e[rc[k]];
} node query(int k,int l,int r,int opl,int opr)
{
if(opl>opr) return zero;
if(l>=opl && r<=opr) return e[k];
int mid=l+r>>;
if(opr<=mid) return query(lc[k],l,mid,opl,opr);
if(opl>mid) return query(rc[k],mid+,r,opl,opr);
return query(lc[k],l,mid,opl,opr)+query(rc[k],mid+,r,opl,opr);
} bool check(int pos)
{
if(query(root[pos],,n,q[],q[]).rmax+query(root[pos],,n,q[]+,q[]-).sum+query(root[pos],,n,q[],q[]).lmax>=) return true;
return false;
} int main()
{
freopen("nt2012_middle.in","r",stdin);
freopen("nt2012_middle.out","w",stdout);
read(n);
for(int i=;i<=n;++i)
{
read(a[i].first);
a[i].second=i;
}
sort(a+,a+n+);
build(root[],,n);
for(int i=;i<=n;++i) change(root[i-],root[i],,n,a[i].second);
int m;
read(m);
int ans=;
int l,r,mid;
while(m--)
{
for(int i=;i<;++i)
{
read(q[i]);
q[i]+=ans;
q[i]%=n;
q[i]++;
}
sort(q,q+);
l=,r=n;
while(l<=r)
{
mid=l+r>>;
if(check(mid-)) ans=mid,l=mid+;
else r=mid-;
}
ans=a[ans].first;
cout<<ans<<'\n';
}
}
1763. [国家集训队2012]middle
★★★☆ 输入文件:nt2012_middle.in
输出文件:nt2012_middle.out
简单对比
时间限制:3 s 内存限制:1024 MB
middle(陈立杰)
时间限制:3.0s 内存限制:1.0GB
【大意】
一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整。
给你一个长度为n的序列s。
回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[c,d]之间的子序列中,最大的中位数。
其中a<b<c<d。
位置也从0开始标号。
我会使用一些方式强制你在线。
【输入格式】
第一行序列长度n。
接下来n行按顺序给出a中的数。
接下来一行Q。
然后Q行每行a,b,c,d,我们令上个询问的答案是x(如果这是第一个询问则x=0)。
令数组q={(a+x)%n,(b+x)%n,(c+x)%n,(d+x)%n}。
将q从小到大排序之后,令真正的要询问的a=q[0],b=q[1],c=q[2],d=q[3]。
输入保证满足条件。
接下来n行按顺序给出a中的数。
接下来一行Q。
然后Q行每行a,b,c,d,我们令上个询问的答案是x(如果这是第一个询问则x=0)。
令数组q={(a+x)%n,(b+x)%n,(c+x)%n,(d+x)%n}。
将q从小到大排序之后,令真正的要询问的a=q[0],b=q[1],c=q[2],d=q[3]。
输入保证满足条件。
【输出格式】
Q行依次给出询问的答案。
【数据规模和约定】
0:n,Q<=100
1,...,5:n<=2000
0,...,19:n<=20000,Q<=25000
1,...,5:n<=2000
0,...,19:n<=20000,Q<=25000
【样例输入】
5
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0
【样例输出】
271451044
271451044
969056313
271451044
969056313