本题难度为hard,要考虑全数组边界情况,可以转换为求两个有序数组第K个值。
基本思想是,在排除一些边界条件后,两个数组分别通过二分查找(二分时间复杂度是log(m+n)),通过二分后数据的数量和K的大小来进行下一轮二分两个数组的起始、结束点与新K值的确定。自己二分没有写出来(一些边界总是没找全),在discuss里面看到如下python解法,很简洁,贴出来大家看。
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Example 1:
nums1 = [1, 3] nums2 = [2] The median is 2.0
Example 2:
nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5
class Solution(object): def findMedianSortedArrays(self, A, B): l = len(A) + len(B) if l % 2 == 1: return self.kth(A, B, l /2) else: return (self.kth(A, B, l / 2) + self.kth(A, B, l / 2 - 1)) / 2. def kth(self, a, b, k): if not a: return b[k] if not b: return a[k] ia, ib = len(a) // 2, len(b) // 2 ma, mb = a[ia], b[ib] # when k is bigger than the sum of a and b's median indices if ia + ib < k: # if a's median is bigger than b's, b's first half doesn't include k if ma > mb: return self.kth(a, b[ib + 1:], k - ib - 1) else: return self.kth(a[ia + 1:], b, k - ia - 1) # when k is smaller than the sum of a and b's indices else: # if a's median is bigger than b's, a's second half doesn't include k if ma > mb: return self.kth(a[:ia], b, k) else: return self.kth(a, b[:ib], k)