最近小菜鸟西瓜莹看到了一道面试题:
给定二叉树,按层打印。例如1的子节点是2、3, 2的子节点是3、4, 5的子节点是6,7.
需要建立如图二叉树:
但是西瓜莹找到的相关代码都是用js构建最优二叉树,假如,依次向二叉树中添加4,2,6,1,3,5,7最优二叉树如图:
比根节点小的节点总是放在根节点的左节点上,比根节点大的节点总是放在根节点的右节点上。
假如想依次向二叉树添加1,2,3,4,5,6,7 二叉树又是如何呢?
后一个数据总是比前一个数据大,那么就会一直在根节点的右节点上。
构建最优二叉树的核心就是添加节点的函数,记录当前节点,如果新数据比当前节点小,则让新数据成为左节点。否则成为右节点。
代码如下:
function addNode(ele){
var n = new Node(ele, null, null);
var Que = [];
if(this.root == null)
{
this.root = n;
}
else {
var curr = this.root;
var parent;
while(true)
{
parent = curr;
if(ele<curr.element)
{
curr = curr.left;
if( curr == null)
{
parent.left = n;
break;
}
}
else{
curr = curr.right;
if(curr == null)
{
parent.right = n;
break;
}
}
} } } }
可是目的并不是创建最优二叉树,而是创建1,2,3,4,5,6,7这样的二叉树,那么如何实现呢?
思路:用一个队列来存储节点,将根节点放入队列中,如果根节点既有左节点又有右节点,将左右节点放入队列,如果没有左节点,将新数据放在左节点上,如果没有右节点,就将新数据放在右节点上。
代码:
function addNode(ele){
var n = new Node(ele, null, null);
var Que = [];
if(this.root == null)
{
this.root = n;
}
else {
var curr = this.root;
Que.push(curr);
}
while(Que.length>0)
{
curr = Que.shift();
if(curr.left != null && curr.right != null)
{
Que.push(curr.left);
Que.push(curr.right);
}
else if(curr.left == null )
{
curr.left = n;
break;
}
else if(curr.right == null)
{
curr.right = n;
break;
}
} }
二叉树的遍历
层次遍历也采用队列思想:
function showLevel(node)
{
var queue = [];
var curr;
if(this.root != null)
{
queue.push(this.root)
}
while(queue.length>0)
{
curr = queue.shift();
console.info(curr.element)
if(curr.left != null && curr.right != null)
{
queue.push(curr.left);
queue.push(curr.right);
}
else if(curr.left == null )
{
continue;
}
else if(curr.right == null)
{
queue.push(curr.left);
continue;
}
}
}
执行结果:
先序遍历:
function showTree(node){
if(!(node == null))
{
node.show();
showTree(node.left);
showTree(node.right);
}
}
运行结果:
完整代码:
function Node(ele, left, right){
this.element = ele;
this.left = left;
this.right = right;
this.show = show;
}
function show(){
console.log(this.element);
}
function BinaryTree(){
this.root = null;
this.addNode = addNode;
this.showTree = showTree;
this.showLevel = showLevel;
} function addNode(ele){
var n = new Node(ele, null, null);
var Que = [];
if(this.root == null)
{
this.root = n;
}
else {
var curr = this.root;
Que.push(curr);
}
while(Que.length>0)
{
curr = Que.shift();
if(curr.left != null && curr.right != null)
{
Que.push(curr.left);
Que.push(curr.right);
}
else if(curr.left == null )
{
curr.left = n;
break;
}
else if(curr.right == null)
{
curr.right = n;
break;
}
} } function showTree(node){
if(!(node == null))
{
node.show();
showTree(node.left);
showTree(node.right);
}
} function showLevel(node)
{
var queue = [];
var curr;
if(this.root != null)
{
queue.push(this.root)
}
while(queue.length>0)
{
curr = queue.shift();
console.info(curr.element)
if(curr.left != null && curr.right != null)
{
queue.push(curr.left);
queue.push(curr.right);
}
else if(curr.left == null )
{
continue;
}
else if(curr.right == null)
{
queue.push(curr.left);
continue;
}
}
} var Tree = new BinaryTree();
Tree.addNode(1)
Tree.addNode(2)
Tree.addNode(3)
Tree.addNode(4)
Tree.addNode(5)
Tree.addNode(6)
Tree.addNode(7)
showTree(Tree.root)
Tree.showLevel(Tree.root)
这样,我们就构建了一个二叉树: