题目:
DZY开始有 \(n\) 个点,现在他对这 \(n\) 个点进行了 \(m\) 次操作,对于第 \(i\) 个操作(从 \(1\) 开始编号)有可能的三种情况:
- Add a b: 表示在 \(a\) 与 \(b\) 之间连了一条长度为 \(i\) 的边(注意,\(i\)是操作编号)。保证 \(1 \leq a, b \leq n\)。
- Delete k: 表示删除了当前图中边权最大的k条边。保证 \(k\) 一定不会比当前图中边的条数多。
- Return: 表示撤销第 \(i-1\) 次操作。保证第 \(1\) 次操作不是 Return 且第 \(i-1\) 次不是 Return 操作。
请你在每次操作后告诉DZY当前图的最小生成树边权和。如果最小生成树不存在则输出 \(0\)。
题解:
首先我们来挖掘一下题目的性质.
- 加入的边权值递增
- 如果一条边被删除,那么所有大于这条边权值的边要么没被加入,要么已经被删除.
所以我们可以直接大力可持久化并查集.
\(O(mlog^2n)\) 做一些有理有据的底层优化应该能过掉.
但其实这道题没有那么复杂.
首先我们先忽略掉Return操作.
我们考虑维护动态加入和删除的并查集.
我们可以直接在\(O(mlogn)\)内完成.
但其实加上Return操作后对我们的做法也没有什么影响.
进行每一次操作的时候,我们首先检查一下下一操作是不是Return操作
如果不是Return我们就直接在现有的状态上进行修改.
如果是Return那么我们就计算出当前操作的影响,并不把这份影响加入到我们当前的状态中.
这样我们就可以直接用一维数组解决掉啦..
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch > '!');if(flag) x=-x;
}
const int maxn = 510010;
int fa[maxn],siz[maxn];
inline int find(int x){
while(fa[x] != x) x = fa[x];
return x;
}
int ope[maxn];
char s[12];
struct ope{
int op,u,v;
}op[maxn];
ll ans[maxn],sum[maxn];
int main(){
int n,m;read(n);read(m);
for(int i=1;i<=n;++i) fa[i] = i,siz[i] = 1;
for(int i=1;i<=m;++i){
scanf("%s",s);
if(*s == 'A'){
op[i].op = 1;
read(op[i].u);
read(op[i].v);
}else if(*s == 'D'){
op[i].op = 2;
read(op[i].u);
}else if(*s == 'R') op[i].op = 3;
}
int ecnt = 0,nodecnt = n;
for(int i=1;i<=m;++i){
if(op[i].op == 1){
if(op[i+1].op == 3){
if(nodecnt == 1) printf("%lld\n",ans[ecnt]);
else if(nodecnt == 2){
int x = find(op[i].u);
int y = find(op[i].v);
if(x == y) puts("0");
else printf("%lld\n",sum[ecnt] + i);
}else puts("0");
printf("%lld\n",ans[ecnt]);
++ i;
}else{
ans[ecnt+1] = ans[ecnt];
sum[ecnt+1] = sum[ecnt];
++ecnt;
int x = find(op[i].u);
int y = find(op[i].v);
if(x == y){
printf("%lld\n",ans[ecnt]);
ope[ecnt] = 0;
continue;
}
if(siz[x] > siz[y]) swap(x,y);
fa[x] = y;siz[y] += siz[x];ope[ecnt] = x;
sum[ecnt] += i;
if(--nodecnt == 1) ans[ecnt] = sum[ecnt];
printf("%lld\n",ans[ecnt]);
}
}else if(op[i].op == 2){
if(op[i+1].op == 3){
printf("%lld\n",ans[ecnt-op[i].u]);
++ i;
printf("%lld\n",ans[ecnt]);
}else{
for(int j=0;j<op[i].u;++j){
if(ope[ecnt] != 0){
int x = ope[ecnt];
++ nodecnt;
siz[fa[x]] -= siz[x];
fa[x] = x;
}-- ecnt;
}
printf("%lld\n",ans[ecnt]);
}
}
}
return 0;
}