[抄题]:
Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.
Note:
If n is the length of array, assume the following constraints are satisfied:
- 1 ≤ n ≤ 1000
- 1 ≤ m ≤ min(50, n)
Examples:
Input: nums = [7,2,5,10,8] m = 2 Output: 18 Explanation: There are four ways to split nums into two subarrays. The best way is to split it into [7,2,5] and [10,8], where the largest sum among the two subarrays is only 18.
[暴力解法]:
时间分析:
空间分析:
[优化后]:
时间分析:
空间分析:
[奇葩输出条件]:
[奇葩corner case]:
[思维问题]:
不知道干嘛用二分法:二分法可以通过mid的移动 找一个位置
[英文数据结构或算法,为什么不用别的数据结构或算法]:
[一句话思路]:
想不到:最大的数肯定要分隔开,就看能往左划几个数和它一组
[7,2,5,10,8,105550]
3 返回105550
分组不超过m就往左扩展 否则往右
[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):
[画图]:
[一刷]:
l r都必须定义成long型,在返回的时候切换回来
[二刷]:
[三刷]:
[四刷]:
[五刷]:
[五分钟肉眼debug的结果]:
[总结]:
多试试几个case 自然就明白了
数组中找一个位置,就可以用二分查找
[复杂度]:Time complexity: O(lgn) Space complexity: O(1)
[算法思想:迭代/递归/分治/贪心]:迭代
[关键模板化代码]:
while (l <= r) { long mid = (l + r) / 2; if (noLongerThanM(mid, nums, m)) r = mid - 1; else l = mid + 1; } return (int)l; }
[其他解法]:
dp麻烦
[Follow Up]:
[LC给出的题目变变变]:
[代码风格] :
[是否头一次写此类driver funcion的代码] :
class Solution { public int splitArray(int[] nums, int m) { //ini: sum, l, r int max = nums[0]; long sum = 0; for (int num : nums) { sum += num; max = Math.max(max, num); } //cc if (nums.length == 1) return (int)sum; long l = max, r = sum; // b - s while (l <= r) { long mid = (l + r) / 2; if (noLongerThanM(mid, nums, m)) r = mid - 1; else l = mid + 1; } return (int)l; } public boolean noLongerThanM(long value, int[] nums, int m) { int count = 1, sum = 0; for (int num : nums) { sum += num; if (sum > value) { sum = num; count++; if (count > m) return false; } } return true; } }