410. Split Array Largest Sum 把数组划分为m组,怎样使最大和最小

时间:2021-10-18 17:25:35

[抄题]:

Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.

Note:
If n is the length of array, assume the following constraints are satisfied:

  • 1 ≤ n ≤ 1000
  • 1 ≤ m ≤ min(50, n)

Examples:

Input:
nums = [7,2,5,10,8]
m = 2 Output:
18 Explanation:
There are four ways to split nums into two subarrays.
The best way is to split it into [7,2,5] and [10,8],
where the largest sum among the two subarrays is only 18.

[暴力解法]:

时间分析:

空间分析:

[优化后]:

时间分析:

空间分析:

[奇葩输出条件]:

[奇葩corner case]:

[思维问题]:

不知道干嘛用二分法:二分法可以通过mid的移动 找一个位置

[英文数据结构或算法,为什么不用别的数据结构或算法]:

[一句话思路]:

想不到:最大的数肯定要分隔开,就看能往左划几个数和它一组

[7,2,5,10,8,105550]
3
返回105550

分组不超过m就往左扩展 否则往右

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

[一刷]:

l r都必须定义成long型,在返回的时候切换回来

[二刷]:

[三刷]:

[四刷]:

[五刷]:

[五分钟肉眼debug的结果]:

[总结]:

多试试几个case 自然就明白了

数组中找一个位置,就可以用二分查找

[复杂度]:Time complexity: O(lgn) Space complexity: O(1)

[算法思想:迭代/递归/分治/贪心]:迭代

[关键模板化代码]:

while (l <= r) {
long mid = (l + r) / 2;
if (noLongerThanM(mid, nums, m)) r = mid - 1;
else l = mid + 1;
} return (int)l;
}

[其他解法]:

dp麻烦

[Follow Up]:

[LC给出的题目变变变]:

[代码风格] :

[是否头一次写此类driver funcion的代码] :

class Solution {
public int splitArray(int[] nums, int m) {
//ini: sum, l, r
int max = nums[0]; long sum = 0;
for (int num : nums) {
sum += num;
max = Math.max(max, num);
} //cc
if (nums.length == 1) return (int)sum;
long l = max, r = sum; // b - s
while (l <= r) {
long mid = (l + r) / 2;
if (noLongerThanM(mid, nums, m)) r = mid - 1;
else l = mid + 1;
} return (int)l;
} public boolean noLongerThanM(long value, int[] nums, int m) {
int count = 1, sum = 0; for (int num : nums) {
sum += num;
if (sum > value) {
sum = num;
count++;
if (count > m) return false;
}
} return true;
}
}