【问题描述】
在一片草原上有N个兔子窝,每个窝里住着一只兔子,有M条路径连接这些窝。更特殊地是,至多只有一个兔子窝有3条或更多的路径与它相连,其它的兔子窝只有1条或2条路径与其相连。换句话讲,这些兔子窝之前的路径构成一张N个点、M条边的无向连通图,而度数大于2的点至多有1个。
兔子们决定把其中K个兔子窝扩建成临时避难所。当危险来临时,每只兔子均会同时前往距离它最近的避难所躲避,路程中花费的时间在数值上等于经过的路径条数。为了在最短的时间内让所有兔子脱离危险,请你安排一种建造避难所的方式,使最后一只到达避难所的兔子所花费的时间尽量少。
【输入】
第一行有3个整数N,M,K,分别表示兔子窝的个数、路径数、计划建造的避难所数。
接下来M行每行三个整数x,y,表示第x个兔子窝和第y个兔子窝之间有一条路径相连。任意两个兔子窝之间至多只有1条路径。
【输出】
一个整数,表示最后一只到达避难所的兔子花费的最短时间。
【输入输出样例1】
rabbit.in |
rabbit.out |
5 5 2 1 2 2 3 1 4 1 5 4 5 |
1 |
见选手目录下的rabbit / rabbit1.in与rabbit / rabbit1.out
【输入输出样例1说明】
在第2个和第5个兔子窝建造避难所,这样其它兔子窝的兔子最多只需要经过1条路径就可以到达某个避难所。
【输入输出样例2】
见选手目录下的rabbit / rabbit2.in与rabbit / rabbit2.out
【数据规模与约定】
对于30%的数据,N≤15,K≤4;
对于60%的数据,N≤100;
对于100%的数据,1≤K≤N≤1,000,1≤M≤1,500
/*
求到达时间最晚的兔子的最早到达时间
二分答案X,求解至少建几个避难所,使得每个兔窝在距离X的范围内至少有一个避难所
枚举住在“根”的兔子去往的避难所的位置,记为A
令与A距离不超过X的兔子都前往A
剩下的兔窝被分成若干条链,容易计算最少需要建立几个避难所
判断总数是否超过K个
*/
#include <cstdio>
#include <cstring>
#define min(a,b) ((a)<(b)?(a):(b))
using namespace std; const int maxn = ;
struct data {
int adj, next;
} r[ * maxn];
int g[maxn], tot, du[maxn], rt;
void ins(int a, int b)
{
r[++tot].adj = b;
r[tot].next = g[a];
g[a] = tot;
}
int n, m, k; struct road {
bool circle;
int len;
};
road d[maxn], d2[maxn];
int cnt; int calc(int len, int t)//计算链中需要建造的避难所的数量,每t*2+1个点建一个
{
if (len <= ) return ;
return (len - ) / (t * + ) + ;
} bool check(int t)
{
int mind = n + ;
for (int i = ; i < cnt; ++i)
{
for (int kp = ; kp <= d[i].len && kp <= t; ++kp)
{
int tot;
if (!d[i].circle)
tot = calc(d[i].len - kp - t, t);
else tot = calc(d[i].len - kp - t + (kp - t), t);//注意环的计算,实际上避难所A可以影响到深度比较大的节点
++tot;
for (int j = ; j < cnt; ++j)
if (j != i)
{
if (!d[j].circle)
tot += calc(d[j].len + (kp - t), t);//注意A对他的影响
else
tot += calc(d[j].len + * (kp - t), t);
}
mind = min(mind, tot);
}
}
return mind <= k;
} void binary()
{
int l = , r = n;
while (l < r)
{
int mid = (l + r) >> ;
if (check(mid)) r = mid;
else l = mid + ;
}
printf("%d\n", r);
} void init();
int main()
{
freopen("rabbit.in", "r", stdin);
freopen("rabbit.out", "w", stdout); init();
binary();
return ;
}
bool col[maxn];
int t0;
void dfs(int x)
{
col[x] = ;
++d[cnt].len;
for (int p = g[x]; p != -; p = r[p].next)
if (col[r[p].adj] == )
dfs(r[p].adj);
else if (r[p].adj == rt && x != t0)
d[cnt].circle = ;
}
void init()
{
scanf("%d%d%d", &n, &m, &k);
memset(g, , sizeof(g));
tot = -;
memset(du, , sizeof(du));
rt = ;
for (int i = ; i <= m; ++i)
{
int a, b;
scanf("%d%d", &a, &b);
++du[a];
if (du[a] > ) rt = a;
++du[b];
if (du[b] > ) rt = b;
ins(a, b);
ins(b, a);
}
cnt = ;//从根伸出去的链+环的数量
memset(col, , sizeof(col));
col[rt] = ;//访问标记
for (int i = g[rt]; i != -; i = r[i].next)
if (col[r[i].adj] == )
{
t0 = r[i].adj;//用于判环
d[cnt].circle = ;//是否在环中
d[cnt].len = ;//此链Or环的长度(可以想成是点的数量)
dfs(r[i].adj);
++cnt;
}
}