1.SciPy和Numpy的处理能力:
numpy的处理能力包括:
- a powerful N-dimensional array object N维数组;
- advanced array slicing methods (to select array elements);N维数组的分片方法;
- convenient array reshaping methods;N维数组的变形方法;
and it even contains 3 libraries with numerical routines:
- basic linear algebra functions;基本线性代数函数;
- basic Fourier transforms;基本傅立叶变换;
- sophisticated random number capabilities;精巧的随机数生成能力;
scipy是科学和工程计算工具。包括处理多维数组,多维数组可以是向量、矩阵、图形(图形图像是像素的二维数组)、表格(一个表格是一个二维数组);目前能处理的对象有:
- statistics;统计学;
- numeric integration;数值积分;
- special functions;特殊函数;
- integration, ordinarydifferential equation (ODE) solvers;积分和解常微分方程;
- gradient optimization;梯度优化;
- geneticalgorithms;遗传算法;
- parallel programming tools(an expression-to-C++ compilerfor fast execution, and others);并行编程工具;
在将来会增加下面的计算处理能力(现在已经部分地具备了这些能力):
- Circuit Analysis (wrapper around Spice?);电路分析;
- Micro-Electro Mechanical Systems simulators (MEMs);
- Medical image processing;医学图像处理;
- Neural networks;神经网络;
- 3-D Visualization via VTK;3D可视化;
- Financial analysis;金融分析;
- Economic analysis;经济分析;
- Hidden Markov Models;隐藏马尔科夫模型;
2.处理图像 翻译链接:http://reverland.org/python/2012/11/12/numpyscipy/
原始链接:http://scipy-lectures.github.io/advanced/image_processing/index.html
特征提取和分形:
边缘检测
合成数据:
>>> im = np.zeros((256, 256))
>>> im[64:-64, 64:-64] = 1
>>>
>>> im = ndimage.rotate(im, 15, mode='constant')
>>> im = ndimage.gaussian_filter(im, 8)
使用_梯度操作(Sobel)_来找到搞强度的变化:
>>> sx = ndimage.sobel(im, axis=0, mode='constant')
>>> sy = ndimage.sobel(im, axis=1, mode='constant')
>>> sob = np.hypot(sx, sy)
canny滤镜
Canny滤镜可以从skimage
中获取(文档),但是为了方便我们在这个教程中作为一个_单独模块_导入:
>>> #from skimage.filter import canny
>>> #or use module shipped with tutorial
>>> im += 0.1*np.random.random(im.shape)
>>> edges = canny(im, 1, 0.4, 0.2) # not enough smoothing
>>> edges = canny(im, 3, 0.3, 0.2) # better parameters
需要调整几个参数……过度拟合的风险
分割
-
基于_直方图_的分割(没有空间信息)
>>> n = 10
>>> l = 256
>>> im = np.zeros((l, l))
>>> np.random.seed(1)
>>> points = l*np.random.random((2, n**2))
>>> im[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
>>> im = ndimage.gaussian_filter(im, sigma=l/(4.*n))
>>> mask = (im > im.mean()).astype(np.float)
>>> mask += 0.1 * im
>>> img = mask + 0.2*np.random.randn(*mask.shape)
>>> hist, bin_edges = np.histogram(img, bins=60)
>>> bin_centers = 0.5*(bin_edges[:-1] + bin_edges[1:])
>>> binary_img = img > 0.5