I am new to Python and Numpy so maybe the title of my question is wrong.
我是Python和Numpy的新手,所以也许我的问题的标题是错误的。
I load some data from a matlab file
我从matlab文件加载一些数据
data=scipy.io.loadmat("data.mat")
x=data['x']
y=data['y']
>>> x.shape
(2194, 12276)
>>> y.shape
(2194, 1)
y
is a vector and I would like to have y.shape = (2194,)
.
y是一个向量,我想要y.shape =(2194,)。
I do not the difference between (2194,)
and (2194,1)
but seems that sklearn.linear_model.LassoCV encounter an error if you try to load y
such that y.shape=(2194,1)
.
我没有(2194,)和(2194,1)之间的区别,但似乎sklearn.linear_model.LassoCV遇到错误,如果你试图加载y使y.shape =(2194,1)。
So how can I change my y
vector in order to have y.shape=(2194,)
??
那么我怎么能改变我的y向量才能得到y.shape =(2194,)?
1 个解决方案
#1
8
First convert to an array, then squeeze to remove extra dimensions:
首先转换为数组,然后挤压以删除额外的尺寸:
y = y.A.squeeze()
In steps:
步骤:
In [217]: y = np.matrix([1,2,3]).T
In [218]: y
Out[218]:
matrix([[1],
[2],
[3]])
In [219]: y.shape
Out[219]: (3, 1)
In [220]: y = y.A
In [221]: y
Out[221]:
array([[1],
[2],
[3]])
In [222]: y.shape
Out[222]: (3, 1)
In [223]: y.squeeze()
Out[223]: array([1, 2, 3])
In [224]: y = y.squeeze()
In [225]: y.shape
Out[225]: (3,)
#1
8
First convert to an array, then squeeze to remove extra dimensions:
首先转换为数组,然后挤压以删除额外的尺寸:
y = y.A.squeeze()
In steps:
步骤:
In [217]: y = np.matrix([1,2,3]).T
In [218]: y
Out[218]:
matrix([[1],
[2],
[3]])
In [219]: y.shape
Out[219]: (3, 1)
In [220]: y = y.A
In [221]: y
Out[221]:
array([[1],
[2],
[3]])
In [222]: y.shape
Out[222]: (3, 1)
In [223]: y.squeeze()
Out[223]: array([1, 2, 3])
In [224]: y = y.squeeze()
In [225]: y.shape
Out[225]: (3,)