I was sure something of the sort would exist (along the lines of rowSums
, etc), but I couldn't find anything. Basically, do this:
我确信会存在某种类型(沿着rowSums等),但我找不到任何东西。基本上,这样做:
apply(mx, 1, which.min)
without using apply
so that we can avoid the overhead of calling which.min
nrow(mx)
times, which could be a large number.
不使用apply,这样我们就可以避免调用which.min nrow(mx)次的开销,这可能是一个很大的数字。
1 个解决方案
#1
5
Thanks to @user20650 for the answer:
感谢@ user20650的答案:
set.seed(1)
mx <- matrix(runif(1e7), ncol=5)
With apply
:
system.time(which.min.mx <- apply(mx, 1, which.min))
# user system elapsed
# 4.7 0.0 4.7
with max.col
:
system.time(mx.mins.2 <- max.col(-mx, ties="first"))
# user system elapsed
# 0.12 0.00 0.13
all.equal(which.min.mx, mx.mins.2)
# [1] TRUE
Old answer: This is the best I came up with. Hopefully somebody has something better like a built in row.which.min
or some such. Data:
老答案:这是我想出的最好的答案。希望有人有更好的东西像内置row.which.min或其他一些。数据:
Using pmin
, ==
, %%
, and some vector recycling:
使用pmin,==,%%和一些向量回收:
system.time({
row.min <- do.call(pmin, as.data.frame(mx))
mx.mins <- which(t(mx == row.min)) %% ncol(mx)
mx.mins[!mx.mins] <- ncol(mx)
})
# user system elapsed
# 0.51 0.00 0.51
all.equal(which.min.mx, mx.mins)
# [1] TRUE
Not to mention this kind of falls flat on its face if there is more than one minimum value in a row.
如果连续存在多个最小值,更不用说这种下降是平坦的。
#1
5
Thanks to @user20650 for the answer:
感谢@ user20650的答案:
set.seed(1)
mx <- matrix(runif(1e7), ncol=5)
With apply
:
system.time(which.min.mx <- apply(mx, 1, which.min))
# user system elapsed
# 4.7 0.0 4.7
with max.col
:
system.time(mx.mins.2 <- max.col(-mx, ties="first"))
# user system elapsed
# 0.12 0.00 0.13
all.equal(which.min.mx, mx.mins.2)
# [1] TRUE
Old answer: This is the best I came up with. Hopefully somebody has something better like a built in row.which.min
or some such. Data:
老答案:这是我想出的最好的答案。希望有人有更好的东西像内置row.which.min或其他一些。数据:
Using pmin
, ==
, %%
, and some vector recycling:
使用pmin,==,%%和一些向量回收:
system.time({
row.min <- do.call(pmin, as.data.frame(mx))
mx.mins <- which(t(mx == row.min)) %% ncol(mx)
mx.mins[!mx.mins] <- ncol(mx)
})
# user system elapsed
# 0.51 0.00 0.51
all.equal(which.min.mx, mx.mins)
# [1] TRUE
Not to mention this kind of falls flat on its face if there is more than one minimum value in a row.
如果连续存在多个最小值,更不用说这种下降是平坦的。