Let's say I have an array r
of dimension (n, m)
. I would like to shuffle the columns of that array.
假设我有一个维数(n,m)的数组r。我想改组那个数组的列。
If I use numpy.random.shuffle(r)
it shuffles the lines. How can I only shuffle the columns? So that the first column become the second one and the third the first, etc, randomly.
如果我使用numpy.random.shuffle(r)它会改变行。我怎么才能洗牌?因此第一列成为第二列,第三列成为第一列,等等。
Example:
例:
input:
输入:
array([[ 1, 20, 100],
[ 2, 31, 401],
[ 8, 11, 108]])
output:
输出:
array([[ 20, 1, 100],
[ 31, 2, 401],
[ 11, 8, 108]])
5 个解决方案
#1
15
While asking I thought about maybe I could shuffle the transposed array:
在问我想的时候我可能会改变转置的数组:
np.random.shuffle(np.transpose(r))
It looks like it does the job. I'd appreciate comments to know if it's a good way of achieving this.
看起来它完成了这项工作。我很感激评论,知道这是否是实现这一目标的好方法。
#2
6
For a general axis you could follow the pattern:
对于一般轴,您可以遵循以下模式:
>>> import numpy as np
>>>
>>> a = np.array([[ 1, 20, 100, 4],
... [ 2, 31, 401, 5],
... [ 8, 11, 108, 6]])
>>>
>>> print a[:, np.random.permutation(a.shape[1])]
[[ 4 1 20 100]
[ 5 2 31 401]
[ 6 8 11 108]]
>>>
>>> print a[np.random.permutation(a.shape[0]), :]
[[ 1 20 100 4]
[ 2 31 401 5]
[ 8 11 108 6]]
>>>
#3
2
So, one step further from your answer:
那么,离你的答案更进一步:
Edit: I very easily could be mistaken how this is working, so I'm inserting my understanding of the state of the matrix at each step.
编辑:我很容易被误解为这是如何工作的,所以我在每一步都插入了对矩阵状态的理解。
r == 1 2 3
4 5 6
6 7 8
r = np.transpose(r)
r == 1 4 6
2 5 7
3 6 8 # Columns are now rows
np.random.shuffle(r)
r == 2 5 7
3 6 8
1 4 6 # Columns-as-rows are shuffled
r = np.transpose(r)
r == 2 3 1
5 6 4
7 8 6 # Columns are columns again, shuffled.
which would then be back in the proper shape, with the columns rearranged.
然后它将以适当的形状返回,并重新排列列。
The transpose of the transpose of a matrix == that matrix, or, [A^T]^T == A. So, you'd need to do a second transpose after the shuffle (because a transpose is not a shuffle) in order for it to be in its proper shape again.
矩阵的转置的转置==那个矩阵,或者,[A ^ T] ^ T == A.所以,你需要在shuffle之后进行第二次转置(因为转置不是一个shuffle)为了使它再次处于适当的形状。
Edit: The OP's answer skips storing the transpositions and instead lets the shuffle operate on r as if it were.
编辑:OP的答案跳过存储转置,而是让shuffle在r上运行,就好像它一样。
#4
0
In general if you want to shuffle a numpy array along axis i
:
一般来说,如果你想沿着轴i洗牌一个numpy数组:
def shuffle(x, axis = 0):
n_axis = len(x.shape)
t = np.arange(n_axis)
t[0] = axis
t[axis] = 0
xt = np.transpose(x.copy(), t)
np.random.shuffle(xt)
shuffled_x = np.transpose(xt, t)
return shuffled_x
shuffle(array, axis=i)
#5
0
>>> print(s0)
>>> [[0. 1. 0. 1.]
[0. 1. 0. 0.]
[0. 1. 0. 1.]
[0. 0. 0. 1.]]
>>> print(np.random.permutation(s0.T).T)
>>> [[1. 0. 1. 0.]
[0. 0. 1. 0.]
[1. 0. 1. 0.]
[1. 0. 0. 0.]]
np.random.permutation(), does the row permutation.
np.random.permutation(),行排列。
#1
15
While asking I thought about maybe I could shuffle the transposed array:
在问我想的时候我可能会改变转置的数组:
np.random.shuffle(np.transpose(r))
It looks like it does the job. I'd appreciate comments to know if it's a good way of achieving this.
看起来它完成了这项工作。我很感激评论,知道这是否是实现这一目标的好方法。
#2
6
For a general axis you could follow the pattern:
对于一般轴,您可以遵循以下模式:
>>> import numpy as np
>>>
>>> a = np.array([[ 1, 20, 100, 4],
... [ 2, 31, 401, 5],
... [ 8, 11, 108, 6]])
>>>
>>> print a[:, np.random.permutation(a.shape[1])]
[[ 4 1 20 100]
[ 5 2 31 401]
[ 6 8 11 108]]
>>>
>>> print a[np.random.permutation(a.shape[0]), :]
[[ 1 20 100 4]
[ 2 31 401 5]
[ 8 11 108 6]]
>>>
#3
2
So, one step further from your answer:
那么,离你的答案更进一步:
Edit: I very easily could be mistaken how this is working, so I'm inserting my understanding of the state of the matrix at each step.
编辑:我很容易被误解为这是如何工作的,所以我在每一步都插入了对矩阵状态的理解。
r == 1 2 3
4 5 6
6 7 8
r = np.transpose(r)
r == 1 4 6
2 5 7
3 6 8 # Columns are now rows
np.random.shuffle(r)
r == 2 5 7
3 6 8
1 4 6 # Columns-as-rows are shuffled
r = np.transpose(r)
r == 2 3 1
5 6 4
7 8 6 # Columns are columns again, shuffled.
which would then be back in the proper shape, with the columns rearranged.
然后它将以适当的形状返回,并重新排列列。
The transpose of the transpose of a matrix == that matrix, or, [A^T]^T == A. So, you'd need to do a second transpose after the shuffle (because a transpose is not a shuffle) in order for it to be in its proper shape again.
矩阵的转置的转置==那个矩阵,或者,[A ^ T] ^ T == A.所以,你需要在shuffle之后进行第二次转置(因为转置不是一个shuffle)为了使它再次处于适当的形状。
Edit: The OP's answer skips storing the transpositions and instead lets the shuffle operate on r as if it were.
编辑:OP的答案跳过存储转置,而是让shuffle在r上运行,就好像它一样。
#4
0
In general if you want to shuffle a numpy array along axis i
:
一般来说,如果你想沿着轴i洗牌一个numpy数组:
def shuffle(x, axis = 0):
n_axis = len(x.shape)
t = np.arange(n_axis)
t[0] = axis
t[axis] = 0
xt = np.transpose(x.copy(), t)
np.random.shuffle(xt)
shuffled_x = np.transpose(xt, t)
return shuffled_x
shuffle(array, axis=i)
#5
0
>>> print(s0)
>>> [[0. 1. 0. 1.]
[0. 1. 0. 0.]
[0. 1. 0. 1.]
[0. 0. 0. 1.]]
>>> print(np.random.permutation(s0.T).T)
>>> [[1. 0. 1. 0.]
[0. 0. 1. 0.]
[1. 0. 1. 0.]
[1. 0. 0. 0.]]
np.random.permutation(), does the row permutation.
np.random.permutation(),行排列。