I have a pandas dataframe, df , that contains columns where each row contains a numpy array of varying size e.g.
我有一个pandas数据帧,df,其中包含每列包含不同大小的numpy数组的列,例如
column A
0 np.array([1,2,3])
1 np.array([1,2,3,4])
2 np.array([1,2])
I there a built in pandas function that will return the mean value of each array, i.e. row, for the entire column? Something like :
我有一个内置的pandas函数,它将返回整个列的每个数组的平均值,即行?就像是 :
df.A.mean()
But which operates on each row. Thanks for any help.
但是哪一行都在运行。谢谢你的帮助。
1 个解决方案
#1
You can use df.<column>.map
to apply a function to each element in a column:
您可以使用df。
df = pd.DataFrame({'a':
[np.array([1, 2, 3]),
np.array([4, 5, 6, 7]),
np.array([7, 8])]
})
df
Out[8]:
a
0 [1, 2, 3]
1 [4, 5, 6, 7]
2 [7, 8]
df['a'].map(lambda x: x.mean())
Out[9]:
0 2.0
1 5.5
2 7.5
Name: a, dtype: float64
#1
You can use df.<column>.map
to apply a function to each element in a column:
您可以使用df。
df = pd.DataFrame({'a':
[np.array([1, 2, 3]),
np.array([4, 5, 6, 7]),
np.array([7, 8])]
})
df
Out[8]:
a
0 [1, 2, 3]
1 [4, 5, 6, 7]
2 [7, 8]
df['a'].map(lambda x: x.mean())
Out[9]:
0 2.0
1 5.5
2 7.5
Name: a, dtype: float64