源码阅读—Iterator接口和LIstIterator接口

时间:2022-04-24 21:22:09

在继续看ArrayList源码之前,先了解Iterator接口和ListIterator接口,下篇文章详细讲解ArrayList是如何实现它们的。

我们知道,接口只是一种规范,当继承接口并实现其中的方法时,要遵循接口对方法的说明。

1.Iterator接口

Iterator接口取代了Java集合框架中的Enumeratrion。Iterators不同于enumerations的地方主要有两点:

  Iterators允许调用者在迭代过程中从集合里移除元素;

  方法名得到了改善。

Iterator源码如下:

/**
 * An iterator over a collection.  {@code Iterator} takes the place of
 * {@link Enumeration} in the Java Collections Framework.  Iterators
 * differ from enumerations in two ways:
 * Iterators allow the caller to remove elements from the underlying collection during the iteration with well-defined semantics.
 * Method names have been improved.
 * This interface is a member of the Java Collections Framework.
 * @param <E> the type of elements returned by this iterator*/
public interface Iterator<E> {
    /**
     * Returns {@code true} if the iteration has more elements.
     * (In other words, returns {@code true} if {@link #next} would
     * return an element rather than throwing an exception.)
     * @return {@code true} if the iteration has more elements
     */
    boolean hasNext();

    /**
     * Returns the next element in the iteration.
     * @return the next element in the iteration
     * @throws NoSuchElementException if the iteration has no more elements
     */
    E next();

    /**
     * Removes from the underlying collection the last element returned
     * by this iterator (optional operation).  This method can be called
     * only once per call to {@link #next}.  The behavior of an iterator
     * is unspecified if the underlying collection is modified while the
     * iteration is in progress in any way other than by calling this
     * method.
     *
     * @implSpec
     * The default implementation throws an instance of
     * {@link UnsupportedOperationException} and performs no other action.
     *
     * @throws UnsupportedOperationException if the {@code remove}
     *         operation is not supported by this iterator
     *
     * @throws IllegalStateException if the {@code next} method has not
     *         yet been called, or the {@code remove} method has already
     *         been called after the last call to the {@code next}
     *         method
     */
    default void remove() {
        throw new UnsupportedOperationException("remove");
    }

    /**
     * Performs the given action for each remaining element until all elements
     * have been processed or the action throws an exception.  Actions are
     * performed in the order of iteration, if that order is specified.
     * Exceptions thrown by the action are relayed to the caller.
     *
     * @implSpec
     * <p>The default implementation behaves as if:
     * <pre>{@code
     *     while (hasNext())
     *         action.accept(next());
     * }</pre>
     *
     * @param action The action to be performed for each element
     * @throws NullPointerException if the specified action is null
     * @since 1.8
     */
    default void forEachRemaining(Consumer<? super E> action) {
        Objects.requireNonNull(action);
        while (hasNext())
            action.accept(next());
    }
}

Iterator接口定义了四个方法以及各个方法的功能,如果有类实现了这个接口,且实现了这些方法,这方法需要实现定义的功能,遵循这些规则:

  1).hasNext() 判断容器是否有下一个元素,有则返回true;

  2).next() 返回容器中的下一个元素;

  3).remove() 移除当前迭代器返回的最后一个元素。这个方法在每次调用next()方法之后只能调用一次;

  4).Java 8 增加forEachRemaining方法,它可以实现对余下的所有元素执行指定的操作。

更详细的说明请阅读源码中的注释。

2.ListIterator

ListIterator在Iterator基础上提供了add、set、previous等对列表的操作。但是ListIterator跟Iterator一样,仍是在原列表上进行操作。

ListIterator源码如下:

/**
 * An iterator for lists that allows the programmer
 * to traverse the list in either direction, modify
 * the list during iteration, and obtain the iterator's
 * current position in the list. A {@code ListIterator}
 * has no current element; its <I>cursor position</I> always
 * lies between the element that would be returned by a call
 * to {@code previous()} and the element that would be
 * returned by a call to {@code next()}.
 * An iterator for a list of length {@code n} has {@code n+1} possible
 * cursor positions, as illustrated by the carets ({@code ^}) below:
 * <PRE>
 *                      Element(0)   Element(1)   Element(2)   ... Element(n-1)
 * cursor positions:  ^            ^            ^            ^                  ^
 * </PRE>
 * Note that the {@link #remove} and {@link #set(Object)} methods are
 * <i>not</i> defined in terms of the cursor position;  they are defined to
 * operate on the last element returned by a call to {@link #next} or
 * {@link #previous()}.
 *
 * This interface is a member of the Java Collections Framework.*/
public interface ListIterator<E> extends Iterator<E> {
    // Query Operations

    /**
     * Returns {@code true} if this list iterator has more elements when
     * traversing the list in the forward direction. (In other words,
     * returns {@code true} if {@link #next} would return an element rather
     * than throwing an exception.)
     *
     * @return {@code true} if the list iterator has more elements when
     *         traversing the list in the forward direction
     */
    boolean hasNext();

    /**
     * Returns the next element in the list and advances the cursor position.
     * This method may be called repeatedly to iterate through the list,
     * or intermixed with calls to {@link #previous} to go back and forth.
     * (Note that alternating calls to {@code next} and {@code previous}
     * will return the same element repeatedly.)
     *
     * @return the next element in the list
     * @throws NoSuchElementException if the iteration has no next element
     */
    E next();

    /**
     * Returns {@code true} if this list iterator has more elements when
     * traversing the list in the reverse direction.  (In other words,
     * returns {@code true} if {@link #previous} would return an element
     * rather than throwing an exception.)
     *
     * @return {@code true} if the list iterator has more elements when
     *         traversing the list in the reverse direction
     */
    boolean hasPrevious();

    /**
     * Returns the previous element in the list and moves the cursor
     * position backwards.  This method may be called repeatedly to
     * iterate through the list backwards, or intermixed with calls to
     * {@link #next} to go back and forth.  (Note that alternating calls
     * to {@code next} and {@code previous} will return the same
     * element repeatedly.)
     *
     * @return the previous element in the list
     * @throws NoSuchElementException if the iteration has no previous
     *         element
     */
    E previous();

    /**
     * Returns the index of the element that would be returned by a
     * subsequent call to {@link #next}. (Returns list size if the list
     * iterator is at the end of the list.)
     *
     * @return the index of the element that would be returned by a
     *         subsequent call to {@code next}, or list size if the list
     *         iterator is at the end of the list
     */
    int nextIndex();

    /**
     * Returns the index of the element that would be returned by a
     * subsequent call to {@link #previous}. (Returns -1 if the list
     * iterator is at the beginning of the list.)
     *
     * @return the index of the element that would be returned by a
     *         subsequent call to {@code previous}, or -1 if the list
     *         iterator is at the beginning of the list
     */
    int previousIndex();

    // Modification Operations

    /**
     * Removes from the list the last element that was returned by {@link
     * #next} or {@link #previous} (optional operation).  This call can
     * only be made once per call to {@code next} or {@code previous}.
     * It can be made only if {@link #add} has not been
     * called after the last call to {@code next} or {@code previous}.
     *
     * @throws UnsupportedOperationException if the {@code remove}
     *         operation is not supported by this list iterator
     * @throws IllegalStateException if neither {@code next} nor
     *         {@code previous} have been called, or {@code remove} or
     *         {@code add} have been called after the last call to
     *         {@code next} or {@code previous}
     */
    void remove();

    /**
     * Replaces the last element returned by {@link #next} or
     * {@link #previous} with the specified element (optional operation).
     * This call can be made only if neither {@link #remove} nor {@link
     * #add} have been called after the last call to {@code next} or
     * {@code previous}.
     *
     * @param e the element with which to replace the last element returned by
     *          {@code next} or {@code previous}
     * @throws UnsupportedOperationException if the {@code set} operation
     *         is not supported by this list iterator
     * @throws ClassCastException if the class of the specified element
     *         prevents it from being added to this list
     * @throws IllegalArgumentException if some aspect of the specified
     *         element prevents it from being added to this list
     * @throws IllegalStateException if neither {@code next} nor
     *         {@code previous} have been called, or {@code remove} or
     *         {@code add} have been called after the last call to
     *         {@code next} or {@code previous}
     */
    void set(E e);

    /**
     * Inserts the specified element into the list (optional operation).
     * The element is inserted immediately before the element that
     * would be returned by {@link #next}, if any, and after the element
     * that would be returned by {@link #previous}, if any.  (If the
     * list contains no elements, the new element becomes the sole element
     * on the list.)  The new element is inserted before the implicit
     * cursor: a subsequent call to {@code next} would be unaffected, and a
     * subsequent call to {@code previous} would return the new element.
     * (This call increases by one the value that would be returned by a
     * call to {@code nextIndex} or {@code previousIndex}.)
     *
     * @param e the element to insert
     * @throws UnsupportedOperationException if the {@code add} method is
     *         not supported by this list iterator
     * @throws ClassCastException if the class of the specified element
     *         prevents it from being added to this list
     * @throws IllegalArgumentException if some aspect of this element
     *         prevents it from being added to this list
     */
    void add(E e);
}

ListIterator的功能更加强大,定义的方法有:

  1).hasNext() 向前遍历时,如果有下一个元素返回真;

  2).next() 返回下一个元素的值,并将指针加1;

  3).hasPrevious() 向相反方向遍历时,如果还有元素返回真;

  4).previous() 返回上一个元素的值,并将指针前移1;

  5).nextIndex() 返回此时调用next()方法时返回的元素的索引;

  6).previousIndex() 返回此时调用previous()方法时返回的元素的索引;

  7).remove() 移除最近一次调用next()或previous()方法返回的元素(可选);

  8).set(E e) 用元素e将如果此时调用next()或previous()方法返回的元素替换掉;

  9).add(E e) 添加元素到此时调用next()返回的元素之前,或此时调用previous()返回的元素之后。

更详细的说明请阅读源码中的注释。

3.Iterator和ListIterator的区别

Iterator和ListIterator的方法对比如下表:

Iterator

ListIterator

 

hasNext()

hasNext() 覆盖

next()

next() 覆盖

remove()

remove() 覆盖

forEachRemaining(Consumer<? super E> action)

forEachRemaining(Consumer<? super E> action) 继承
  hasPrevious()  
  previous()  
  nextIndex()  
  previousIndex()  
  set(E e)  
  add(E e)  

二者的不同之处主要有:

  1).Iterator只能单向移动,ListIterator可以双向移动;

  2).ListIterator可以删除、替换或添加元素,而Iterator只能删除元素;

  3).ListIterator可以返回当前(调用next()或previous()返回的)元素的索引,而Iterator不能。