在c++中实现提高:障碍11

时间:2022-02-20 21:03:56

I've been trying to get a project rid of every boost reference and switch to pure C++11.

我一直试图让一个项目摆脱所有的boost引用,转而使用纯c++ 11。

At one point, thread workers are created which wait for a barrier to give the 'go' command, do the work (spread through the N threads) and synchronize when all of them finish. The basic idea is that the main loop gives the go order (boost::barrier .wait()) and waits for the result with the same function.

在某一时刻,线程工作者被创建,等待一个屏障来发出“go”命令,完成工作(通过N个线程传播),并在所有线程完成时进行同步。基本思想是主循环提供go命令(boost::barrier .wait()),并使用相同的函数等待结果。

I had implemented in a different project a custom made Barrier based on the Boost version and everything worked perfectly. Implementation is as follows:

我在另一个项目中实现了一个基于Boost版本的自定义屏障,一切都运行得很好。实现如下:

Barrier.h:

Barrier.h:

class Barrier {
public:
    Barrier(unsigned int n);
    void Wait(void);
private:
    std::mutex counterMutex;
    std::mutex waitMutex;

    unsigned int expectedN;
    unsigned int currentN;
};

Barrier.cpp

Barrier.cpp

Barrier::Barrier(unsigned int n) {
    expectedN = n;
    currentN = expectedN;
}

void Barrier::Wait(void) {
    counterMutex.lock();

    // If we're the first thread, we want an extra lock at our disposal

    if (currentN == expectedN) {
        waitMutex.lock();
    }

    // Decrease thread counter

    --currentN;

    if (currentN == 0) {
        currentN = expectedN;
        waitMutex.unlock();

        currentN = expectedN;
        counterMutex.unlock();
    } else {
        counterMutex.unlock();

        waitMutex.lock();
        waitMutex.unlock();
    }
}

This code has been used on iOS and Android's NDK without any problems, but when trying it on a Visual Studio 2013 project it seems only a thread which locked a mutex can unlock it (assertion: unlock of unowned mutex).

这段代码在iOS和Android的NDK上没有任何问题,但在2013年的Visual Studio 2013项目中,它似乎只是一个锁定了一个互斥锁的线程(声明:解锁未拥有的互斥锁)。

Is there any non-spinning (blocking, such as this one) version of barrier that I can use that works for C++11? I've only been able to find barriers which used busy-waiting which is something I would like to prevent (unless there is really no reason for it).

对于c++ 11,是否有我可以使用的非旋转(阻塞)版本的barrier ?我只能找到那些使用忙碌等待的障碍,这是我想要避免的(除非真的没有理由)。

3 个解决方案

#1


15  

Use a std::condition_variable instead of a std::mutex to block all threads until the last one reaches the barrier.

使用std::condition_variable而不是std::mutex来阻塞所有线程,直到最后一个线程到达barrier。

class Barrier
{
private:
    std::mutex _mutex;
    std::condition_variable _cv;
    std::size_t _count;
public:
    explicit Barrier(std::size_t count) : _count{count} { }
    void Wait()
    {
        std::unique_lock<std::mutex> lock{_mutex};
        if (--_count == 0) {
            _cv.notify_all();
        } else {
            _cv.wait(lock, [this] { return _count == 0; });
        }
    }
};

#2


14  

class Barrier {
public:
    explicit Barrier(std::size_t iCount) : 
      mThreshold(iCount), 
      mCount(iCount), 
      mGeneration(0) {
    }

    void Wait() {
        std::unique_lock<std::mutex> lLock{mMutex};
        auto lGen = mGeneration;
        if (!--mCount) {
            mGeneration++;
            mCount = mThreshold;
            mCond.notify_all();
        } else {
            mCond.wait(lLock, [this, lGen] { return lGen != mGeneration; });
        }
    }

private:
    std::mutex mMutex;
    std::condition_variable mCond;
    std::size_t mThreshold;
    std::size_t mCount;
    std::size_t mGeneration;
};

#3


3  

Here's my version of the accepted answer above with Auto reset behavior for repetitive use; this was achieved by counting up and down alternately.

以下是我对上述已接受答案的版本,使用自动重置行为进行重复使用;这是通过向上和向下交替计数实现的。

    /**
    * @brief Represents a CPU thread barrier
    * @note The barrier automatically resets after all threads are synced
    */
    class Barrier
    {
    private:
        std::mutex m_mutex;
        std::condition_variable m_cv;

        size_t m_count;
        const size_t m_initial;

        enum State : unsigned char {
            Up, Down
        };
        State m_state;

    public:
        explicit Barrier(std::size_t count) : m_count{ count }, m_initial{ count }, m_state{ State::Down } { }

        /// Blocks until all N threads reach here
        void Sync()
        {
            std::unique_lock<std::mutex> lock{ m_mutex };

            if (m_state == State::Down)
            {
                // Counting down the number of syncing threads
                if (--m_count == 0) {
                    m_state = State::Up;
                    m_cv.notify_all();
                }
                else {
                    m_cv.wait(lock, [this] { return m_state == State::Up; });
                }
            }

            else // (m_state == State::Up)
            {
                // Counting back up for Auto reset
                if (++m_count == m_initial) {
                    m_state = State::Down;
                    m_cv.notify_all();
                }
                else {
                    m_cv.wait(lock, [this] { return m_state == State::Down; });
                }
            }
        }
    };  

#1


15  

Use a std::condition_variable instead of a std::mutex to block all threads until the last one reaches the barrier.

使用std::condition_variable而不是std::mutex来阻塞所有线程,直到最后一个线程到达barrier。

class Barrier
{
private:
    std::mutex _mutex;
    std::condition_variable _cv;
    std::size_t _count;
public:
    explicit Barrier(std::size_t count) : _count{count} { }
    void Wait()
    {
        std::unique_lock<std::mutex> lock{_mutex};
        if (--_count == 0) {
            _cv.notify_all();
        } else {
            _cv.wait(lock, [this] { return _count == 0; });
        }
    }
};

#2


14  

class Barrier {
public:
    explicit Barrier(std::size_t iCount) : 
      mThreshold(iCount), 
      mCount(iCount), 
      mGeneration(0) {
    }

    void Wait() {
        std::unique_lock<std::mutex> lLock{mMutex};
        auto lGen = mGeneration;
        if (!--mCount) {
            mGeneration++;
            mCount = mThreshold;
            mCond.notify_all();
        } else {
            mCond.wait(lLock, [this, lGen] { return lGen != mGeneration; });
        }
    }

private:
    std::mutex mMutex;
    std::condition_variable mCond;
    std::size_t mThreshold;
    std::size_t mCount;
    std::size_t mGeneration;
};

#3


3  

Here's my version of the accepted answer above with Auto reset behavior for repetitive use; this was achieved by counting up and down alternately.

以下是我对上述已接受答案的版本,使用自动重置行为进行重复使用;这是通过向上和向下交替计数实现的。

    /**
    * @brief Represents a CPU thread barrier
    * @note The barrier automatically resets after all threads are synced
    */
    class Barrier
    {
    private:
        std::mutex m_mutex;
        std::condition_variable m_cv;

        size_t m_count;
        const size_t m_initial;

        enum State : unsigned char {
            Up, Down
        };
        State m_state;

    public:
        explicit Barrier(std::size_t count) : m_count{ count }, m_initial{ count }, m_state{ State::Down } { }

        /// Blocks until all N threads reach here
        void Sync()
        {
            std::unique_lock<std::mutex> lock{ m_mutex };

            if (m_state == State::Down)
            {
                // Counting down the number of syncing threads
                if (--m_count == 0) {
                    m_state = State::Up;
                    m_cv.notify_all();
                }
                else {
                    m_cv.wait(lock, [this] { return m_state == State::Up; });
                }
            }

            else // (m_state == State::Up)
            {
                // Counting back up for Auto reset
                if (++m_count == m_initial) {
                    m_state = State::Down;
                    m_cv.notify_all();
                }
                else {
                    m_cv.wait(lock, [this] { return m_state == State::Down; });
                }
            }
        }
    };