SVM+HOG特征训练分类器

时间:2021-08-08 21:01:24

#1,概念

在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类、以及回归分析。

SVM的主要思想可以概括为两点:⑴它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而 使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;

  方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。HOG特征通过计算和统计图像局部区域的梯度方向直方图来构成特征。

#2,代码和输入文件截图

 #include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <stdlib.h>
#include <tchar.h>
#include <windows.h> #include <opencv2/core/core.hpp>
#include <opencv2/ml/ml.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/imgproc/imgproc.hpp> using namespace cv;
using namespace std; int getfilepath(string txtpath,vector<string>& img_path, vector<int>& roi_sample_class, vector<vector<Rect > >& roi_sample_rect); int main(int argc, char** argv) {
//winSize窗口大小
int ImgWidht = ;
int ImgHeight = ; //Sample总数
int num_sample_roi=; //图片路径,每张图片中的sample类别和每个sample的rect参数
vector<string> img_path;
vector<int> roi_sample_class;
vector<vector<Rect > > roi_sample_rect; //标记文件txt名称和路径
string filepath = "E:/svm/";
string txtpath = string(filepath) + "TrainingData.txt"; //获得图片路径,sample类别,每个sample的rect参数,返回Sample总数(ROI总数)
num_sample_roi=getfilepath(txtpath, img_path, roi_sample_class, roi_sample_rect); //测试img_path, roi_sample_class, roi_sample_rect
//cout << "img_path[0]= " << img_path[0] << "\n img_path[50]= " << img_path[50] << endl;
//cout << "roi_sample_class[0]= " << roi_sample_class[0] << "\n roi_sample_class[150]= " << roi_sample_class[150] << endl;
//cout << "roi_sample_rect[0][0]= " << roi_sample_rect[0][0] << endl;
//system("Pause"); //HOG特征矩阵,sample类别矩阵
//cout << "num_sample_roi= " << num_sample_roi << endl;
//system("Pause");
Mat sample_feature_mat(num_sample_roi, , CV_32FC1);//900=(win_height/8-1)*(win_width/8-1)*(2*2)*9;
Mat sample_class_mat(num_sample_roi, , CV_32SC1); //样本类别 //原图片和训练图片
Mat orig_img;
Mat train_img; //= Mat::zeros(ImgWidht, ImgHeight, CV_8UC3);//需要分析的图片 //sample指示子
unsigned long n_sample = ; //对图片循环
for( string::size_type i = ; i != img_path.size(); i++ )
{
orig_img = imread(img_path[i].c_str(), );
if(orig_img.empty()){
cout<<"Can not load the image: "<<img_path[i]<<endl;
continue;
} //端口的提示信息
cout<<"***processing***"<<img_path[i].c_str()<<endl; //每个sample都要计算hog特征
for (size_t j = ; j != roi_sample_rect[i].size(); j++){
//取ROI,归一化
Mat handle_src=orig_img(roi_sample_rect[i][j]);
resize(handle_src, train_img, Size(ImgWidht, ImgHeight)); //申明描述子,每个参数的含义见笔记
HOGDescriptor hog(Size(ImgWidht,ImgHeight),Size(,),Size(,),Size(,), ); //描述子申请内存并计算
vector<float> descriptors;
hog.compute(train_img, descriptors); //为当前sample的所有hog descriptor申请内存
//sample_feature_mat[n_sample].resize(descriptors.size(),CV_32FC1); //输出hog特征个数
//cout<<"HOG dims: "<<descriptors.size()<<endl; //每个sample的hog特征个数
for (vector<float>::size_type k = ; k != descriptors.size(); k++)
sample_feature_mat.at<float>(n_sample, k) = descriptors[k]; //int num_class=i/100;
sample_class_mat.at<int>(n_sample, ) = roi_sample_class[i];
cout<<"***end processing***"<<img_path[i].c_str()<<" "<<roi_sample_class[i]<<endl; n_sample++;
} } //SVM参数
Ptr<ml::SVM> svm = ml::SVM::create();
svm->setType(ml::SVM::C_SVC);
svm->setKernel(ml::SVM::RBF);
svm->setTermCriteria(TermCriteria(CV_TERMCRIT_EPS, , FLT_EPSILON)); //SVM训练
svm->train(sample_feature_mat, ml::ROW_SAMPLE, sample_class_mat);
svm->save( filepath+"SVM_DATA.xml" ); system("Pause");
return ;
} int getfilepath(string txtpath,vector<string>& img_path, vector<int>& roi_sample_class, vector<vector<Rect > >& roi_sample_rect){
int nLine = ; //图片计数器,每个类别100张图片。
int numroi=; //sample计数器,总的roi个数 ifstream svm_data( txtpath );
char output[]; while( !svm_data.eof() ) {
svm_data >> output;//是不是>>遇见空格会自动截断?
string s0= string(output);
if( s0.length()> ){
if( nLine < ){
roi_sample_class.push_back(); size_t bufname=s0.find(" ");
string bufname1 = s0.substr(, bufname);
img_path.push_back( bufname1 ); vector<Rect> obj_list;
svm_data >> output;
int obj_num=atoi(output); numroi=numroi+obj_num;
int obj[];
for(int i=; i<obj_num;i++)
{
for(int j=;j<;j++)
{
svm_data >> output;
int p=atoi(output);
obj[j]=p;
}
Rect tmp_obj=Rect(obj[],obj[],obj[],obj[]);
obj_list.push_back(tmp_obj);
}
roi_sample_rect.push_back(obj_list);
}
else if( nLine < ){
roi_sample_class.push_back();
size_t bufname=s0.find(" ");
string bufname1 = s0.substr(, bufname);
img_path.push_back( bufname1 ); vector<Rect> obj_list;
svm_data>>output;
int obj_num=atoi(output); numroi=numroi+obj_num;
int obj[];
for(int i=; i<obj_num;i++)
{
for(int j=;j<;j++)
{
svm_data >> output;
int p=atoi(output);
obj[j]=p;
}
Rect tmp_obj=Rect(obj[],obj[],obj[],obj[]);
obj_list.push_back(tmp_obj);
}
roi_sample_rect.push_back(obj_list);
}
else if( nLine < ){
roi_sample_class.push_back();
size_t bufname=s0.find(" ");
string bufname1 = s0.substr(, bufname);
img_path.push_back( bufname1 ); vector<Rect> obj_list;
svm_data>>output;
int obj_num=atoi(output); numroi=numroi+obj_num;
int obj[];
for(int i=; i<obj_num;i++)
{
for(int j=;j<;j++)
{
svm_data >> output;
int p=atoi(output);
obj[j]=p;
}
Rect tmp_obj=Rect(obj[],obj[],obj[],obj[]);
obj_list.push_back(tmp_obj);
}
roi_sample_rect.push_back(obj_list);
}
else{//(nLine < 400)
roi_sample_class.push_back();
size_t bufname=s0.find(" ");
string bufname1 = s0.substr(, bufname);
img_path.push_back( bufname1 ); vector<Rect> obj_list;
svm_data>>output;
int obj_num=atoi(output); numroi=numroi+obj_num;
int obj[];
for(int i=; i<obj_num;i++)
{
for(int j=;j<;j++)
{
svm_data >> output;
int p=atoi(output);
obj[j]=p;
}
Rect tmp_obj=Rect(obj[],obj[],obj[],obj[]);
obj_list.push_back(tmp_obj);
}
roi_sample_rect.push_back(obj_list);
}
nLine ++; //计数
}
} svm_data.close();
//cout << "numroi= " << numroi<< endl;
return numroi;
}

SVM+HOG

我的输入文件格式:

SVM+HOG特征训练分类器

得到的分类器xml文件和输入的数据文件TrainingData.txt是放在同一个文件夹下:

SVM+HOG特征训练分类器

图片源文件是给的绝对目录,看代码就知道了。